Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Geometric multigrid algorithms for elliptic interface problems using structured grids

Full metadata record
DC Field Value Language
dc.contributor.authorJo, Gwanghyun-
dc.contributor.authorKwak, Do Y.-
dc.date.accessioned2023-09-11T01:34:55Z-
dc.date.available2023-09-11T01:34:55Z-
dc.date.issued2018-06-
dc.identifier.issn1017-1398-
dc.identifier.issn1572-9265-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115203-
dc.description.abstractIn this work, we develop geometric multigrid algorithms for the immersed finite element methods for elliptic problems with interface (Chou et al. Adv. Comput. Math. 33, 149–168 2010; Kwak and Lee, Int. J. Pure Appl. Math. 104, 471–494 2015; Li et al. Numer. Math. 96, 61–98 2003, 2004; Lin et al. SIAM J. Numer. Anal. 53, 1121–1144 2015). We need to design the transfer operators between levels carefully, since the residuals of finer grid problems do not satisfy the flux condition once projected onto coarser grids. Hence, we have to modify the projected residuals so that the flux conditions are satisfied. Similarly, the correction has to be modified after prolongation. Two algorithms are suggested: one for finite element spaces having vertex degrees of freedom and the other for edge average degrees of freedom. For the second case, we use the idea of conforming subspace correction used for P 1 nonconforming case (Lee 1993). Numerical experiments show the optimal scalability in terms of number of arithmetic operations, i.e., O(N) for V-cycle and CG algorithms preconditioned with V-cycle. In V-cycle, we used only one Gauss-Seidel smoothing. The CPU times are also reported. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.-
dc.format.extent25-
dc.language영어-
dc.language.isoENG-
dc.publisherBaltzer Science Publishers B.V.-
dc.titleGeometric multigrid algorithms for elliptic interface problems using structured grids-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1007/s11075-018-0544-9-
dc.identifier.scopusid2-s2.0-85048100536-
dc.identifier.wosid000466166600010-
dc.identifier.bibliographicCitationNumerical Algorithms, v.81, no.1, pp 211 - 235-
dc.citation.titleNumerical Algorithms-
dc.citation.volume81-
dc.citation.number1-
dc.citation.startPage211-
dc.citation.endPage235-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordAuthorElliptic interface problem-
dc.subject.keywordAuthorFinite element method-
dc.subject.keywordAuthorGeometric multigrid method-
dc.subject.keywordAuthorInterface problem-
dc.subject.keywordAuthorOptimal scalability-
dc.subject.keywordAuthorStructured grid-
dc.subject.keywordAuthorV-cycle-
dc.identifier.urlhttps://link.springer.com/article/10.1007/s11075-018-0544-9-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > ERICA 수리데이터사이언스학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jo, Gwanghyun photo

Jo, Gwanghyun
ERICA 소프트웨어융합대학 (ERICA 수리데이터사이언스학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE