Development of methods for identifying an appropriate benchmarking peer to establish information security policy
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kang, Martin | - |
dc.contributor.author | Hovav, Anat | - |
dc.contributor.author | Lee, Euntae T. | - |
dc.contributor.author | Um, Sungyong | - |
dc.contributor.author | Kim, Horim | - |
dc.date.accessioned | 2023-09-11T01:37:54Z | - |
dc.date.available | 2023-09-11T01:37:54Z | - |
dc.date.issued | 2022-09 | - |
dc.identifier.issn | 0957-4174 | - |
dc.identifier.issn | 1873-6793 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115263 | - |
dc.description.abstract | Benchmarking methodology provides organizations with appropriate information security policy. However, selecting an appropriate organization as a benchmarking peer can be a challenge due to firms’ heterogeneous implementation and usage of information systems. Our goal is to develop and propose methods to appropriately identify a benchmarking peer organization by incorporating machine learning methods and mathematics set theory. We incorporate vague soft set, entropy, dynamic time warping, and Gaussian process. We use log data from information security management systems in multiple companies to validate our methods. Our experimental results indicate that the combined use of Gaussian process, vague soft set, and dynamic time warping can be more effective in identifying an appropriate benchmarking peer than conventional machine learning methods. © 2022 Elsevier Ltd | - |
dc.format.extent | 11 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Pergamon Press Ltd. | - |
dc.title | Development of methods for identifying an appropriate benchmarking peer to establish information security policy | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1016/j.eswa.2022.117028 | - |
dc.identifier.scopusid | 2-s2.0-85129484458 | - |
dc.identifier.wosid | 000830169300005 | - |
dc.identifier.bibliographicCitation | Expert Systems with Applications, v.201, pp 1 - 11 | - |
dc.citation.title | Expert Systems with Applications | - |
dc.citation.volume | 201 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 11 | - |
dc.type.docType | 정기학술지(Article(Perspective Article포함)) | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Operations Research & Management Science | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.relation.journalWebOfScienceCategory | Operations Research & Management Science | - |
dc.subject.keywordPlus | GAUSSIAN-PROCESSES | - |
dc.subject.keywordPlus | ENTROPY | - |
dc.subject.keywordPlus | SIMILARITY | - |
dc.subject.keywordPlus | FRAMEWORK | - |
dc.subject.keywordPlus | SETS | - |
dc.subject.keywordPlus | AUC | - |
dc.subject.keywordAuthor | Benchmarking | - |
dc.subject.keywordAuthor | Gaussian process | - |
dc.subject.keywordAuthor | Information security policy | - |
dc.subject.keywordAuthor | Machine learning | - |
dc.subject.keywordAuthor | Method development | - |
dc.subject.keywordAuthor | VSS | - |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S0957417422004444?pes=vor | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.