Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Development of methods for identifying an appropriate benchmarking peer to establish information security policy

Full metadata record
DC Field Value Language
dc.contributor.authorKang, Martin-
dc.contributor.authorHovav, Anat-
dc.contributor.authorLee, Euntae T.-
dc.contributor.authorUm, Sungyong-
dc.contributor.authorKim, Horim-
dc.date.accessioned2023-09-11T01:37:54Z-
dc.date.available2023-09-11T01:37:54Z-
dc.date.issued2022-09-
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115263-
dc.description.abstractBenchmarking methodology provides organizations with appropriate information security policy. However, selecting an appropriate organization as a benchmarking peer can be a challenge due to firms’ heterogeneous implementation and usage of information systems. Our goal is to develop and propose methods to appropriately identify a benchmarking peer organization by incorporating machine learning methods and mathematics set theory. We incorporate vague soft set, entropy, dynamic time warping, and Gaussian process. We use log data from information security management systems in multiple companies to validate our methods. Our experimental results indicate that the combined use of Gaussian process, vague soft set, and dynamic time warping can be more effective in identifying an appropriate benchmarking peer than conventional machine learning methods. © 2022 Elsevier Ltd-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisherPergamon Press Ltd.-
dc.titleDevelopment of methods for identifying an appropriate benchmarking peer to establish information security policy-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.eswa.2022.117028-
dc.identifier.scopusid2-s2.0-85129484458-
dc.identifier.wosid000830169300005-
dc.identifier.bibliographicCitationExpert Systems with Applications, v.201, pp 1 - 11-
dc.citation.titleExpert Systems with Applications-
dc.citation.volume201-
dc.citation.startPage1-
dc.citation.endPage11-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaOperations Research & Management Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryOperations Research & Management Science-
dc.subject.keywordPlusGAUSSIAN-PROCESSES-
dc.subject.keywordPlusENTROPY-
dc.subject.keywordPlusSIMILARITY-
dc.subject.keywordPlusFRAMEWORK-
dc.subject.keywordPlusSETS-
dc.subject.keywordPlusAUC-
dc.subject.keywordAuthorBenchmarking-
dc.subject.keywordAuthorGaussian process-
dc.subject.keywordAuthorInformation security policy-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorMethod development-
dc.subject.keywordAuthorVSS-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0957417422004444?pes=vor-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF BUSINESS AND ECONOMICS > DIVISION OF BUSINESS ADMINISTRATION > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE