Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

MARL-based Random Access Scheme for Delay-constrained umMTC in 6G

Full metadata record
DC Field Value Language
dc.contributor.authorYoun, Jiseung-
dc.contributor.authorPark, Joohan-
dc.contributor.authorKim, Soohyeong-
dc.contributor.authorAhn, Seyoung-
dc.contributor.authorAnsari, Abdul Rahim-
dc.contributor.authorCho, Sunghyun-
dc.date.accessioned2023-09-18T05:31:52Z-
dc.date.available2023-09-18T05:31:52Z-
dc.date.issued2023-06-
dc.identifier.issn1550-2252-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115333-
dc.description.abstractWith the development of IoT technology, 6G defines ultra-massive machine type communication (umMTC) as a core service type. Since umMTC in 6G is composed of a huge number of devices and various IoT service types, an efficient random access (RA) scheme for massive devices is required. We study a scheme that maximizes the successful RA ratio by applying multi-agent reinforcement learning (MARL) in the delay-constrained 6G umMTC environment. We define the necessary information for the optimal RA strategy and describe how to obtain the RA information with machine-type communication device (MTCD) grouping and learning framework. We utilize the QMIX learning framework to solve the non-stationarity problem in MARL and design the learning framework to select optimal RA for each MTCD group. We conduct a simulation to verify the proposed scheme and simulation results show that a successful RA ratio can be improved up to 20% compared to the state-of-the-art in non-uniform device distribution. © 2023 IEEE.-
dc.format.extent6-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleMARL-based Random Access Scheme for Delay-constrained umMTC in 6G-
dc.typeArticle-
dc.identifier.doi10.1109/VTC2023-Spring57618.2023.10200993-
dc.identifier.scopusid2-s2.0-85169813495-
dc.identifier.wosid001054797202132-
dc.identifier.bibliographicCitation2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), v.2023-June, pp 1 - 6-
dc.citation.title2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring)-
dc.citation.volume2023-June-
dc.citation.startPage1-
dc.citation.endPage6-
dc.type.docTypeProceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.subject.keywordAuthordelay constraint-
dc.subject.keywordAuthormulti-agent reinforcement learning-
dc.subject.keywordAuthormulti-cell-
dc.subject.keywordAuthorrandom access-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/10200993?arnumber=10200993&SID=EBSCO:edseee-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > ERICA 컴퓨터학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Sung hyun photo

Cho, Sung hyun
ERICA 소프트웨어융합대학 (ERICA 컴퓨터학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE