Multicomponent Covalent Organic Framework Solid Electrolyte Allowing Effective Li-Ion Dissociation and Diffusion for All-Solid-State Batteries
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, Jun-Hyeong | - |
dc.contributor.author | Lee, Hajin | - |
dc.contributor.author | Lee, Jaewoo | - |
dc.contributor.author | Kang, Tae Woog | - |
dc.contributor.author | Park, Jung Hyun | - |
dc.contributor.author | Shin, Jae-Hoon | - |
dc.contributor.author | Lee, Hyunji | - |
dc.contributor.author | Majhi, Dibyananda | - |
dc.contributor.author | Lee, Sang Uck | - |
dc.contributor.author | Kim, Jong-Ho | - |
dc.date.accessioned | 2023-09-26T07:30:29Z | - |
dc.date.available | 2023-09-26T07:30:29Z | - |
dc.date.issued | 2023-08 | - |
dc.identifier.issn | 1936-0851 | - |
dc.identifier.issn | 1936-086X | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115370 | - |
dc.description.abstract | Organic solid electrolytes compatible with all-solid-state Li metal batteries (LMBs) are essential to ensuring battery safety, high energy density, and long-term cycling performance. However, it remains a challenge to develop an approach to provide organic solid electrolytes with capabilities for the facile dissociation of strong Li-ion pairs and fast transport of ionic components. Herein, a diethylene glycol-modified pyridinium covalent organic framework (DEG-PMCOF) with a well-defined periodic structure is prepared as a multicomponent solid electrolyte with a cationic moiety of high polarity, an additional flexible ion-transporter, and an ordered ionic channel for all-solid-state LMBs. The DEG-containing pyridinium groups of DEG-PMCOF allow a lower dissociation energy of Li salts and a smaller energy barrier of Li-ion transport, leading to high ion conductivity (1.71 × 10-4 S cm-1) and a large Li-ion transfer number (0.61) at room temperature in the solid electrolyte. The DEG-PMCOF solid electrolyte exhibits a wide electrochemical stability window and effectively suppresses the formation of Li dendrites and dead Li in all-solid-state LMBs. Molecular dynamics and density functional theory simulations provide insights into the mechanisms for the enhanced Li-ion transport driven by the integrated diffusion process based on hopping motion, vehicle motion, and free diffusion of DEG-PMCOF. The all-solid-state LMB assembled with a DEG-PMCOF solid electrolyte displays a high specific capacity with a retention of 99% and an outstanding Coulombic efficiency of 99% at various C-rates during long-term cycling. This DEG-PMCOF approach can offer an effective route to design various solid-state Li batteries. © 2023 American Chemical Society. | - |
dc.format.extent | 11 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | American Chemical Society | - |
dc.title | Multicomponent Covalent Organic Framework Solid Electrolyte Allowing Effective Li-Ion Dissociation and Diffusion for All-Solid-State Batteries | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1021/acsnano.3c05405 | - |
dc.identifier.scopusid | 2-s2.0-85170095439 | - |
dc.identifier.wosid | 001063621600001 | - |
dc.identifier.bibliographicCitation | ACS Nano, v.17, no.17, pp 17372 - 17382 | - |
dc.citation.title | ACS Nano | - |
dc.citation.volume | 17 | - |
dc.citation.number | 17 | - |
dc.citation.startPage | 17372 | - |
dc.citation.endPage | 17382 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | ELECTROCHEMICAL STABILITY | - |
dc.subject.keywordPlus | TRANSFERENCE NUMBER | - |
dc.subject.keywordPlus | CONDUCTIVITY | - |
dc.subject.keywordPlus | CRYSTALLINE | - |
dc.subject.keywordPlus | TRANSPORT | - |
dc.subject.keywordPlus | LIQUIDS | - |
dc.subject.keywordPlus | PHASE | - |
dc.subject.keywordPlus | CHALLENGES | - |
dc.subject.keywordPlus | CATHODE | - |
dc.subject.keywordAuthor | all-solid-state lithium metal battery | - |
dc.subject.keywordAuthor | and organic solid electrolyte | - |
dc.subject.keywordAuthor | covalent organic framework | - |
dc.subject.keywordAuthor | dendrite-free | - |
dc.subject.keywordAuthor | multicomponent ionic conductor | - |
dc.identifier.url | https://pubs.acs.org/doi/10.1021/acsnano.3c05405 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.