Generation-Level Parallelism for Evolutionary Computation: A Pipeline-Based Parallel Particle Swarm Optimization
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Jian-Yu | - |
dc.contributor.author | Zhan, Zhi-Hui | - |
dc.contributor.author | Liu, Run-Dong | - |
dc.contributor.author | Wang, Chuan | - |
dc.contributor.author | Kwong, Sam | - |
dc.contributor.author | ZHANG, Jun | - |
dc.date.accessioned | 2023-11-14T01:30:25Z | - |
dc.date.available | 2023-11-14T01:30:25Z | - |
dc.date.issued | 2021-10 | - |
dc.identifier.issn | 2168-2267 | - |
dc.identifier.issn | 2168-2275 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115401 | - |
dc.description.abstract | Due to the population-based and iterative-based characteristics of evolutionary computation (EC) algorithms, parallel techniques have been widely used to speed up the EC algorithms. However, the parallelism usually performs in the population level where multiple populations (or subpopulations) run in parallel or in the individual level where the individuals are distributed to multiple resources. That is, different populations or different individuals can be executed simultaneously to reduce running time. However, the research into generation-level parallelism for EC algorithms has seldom been reported. In this article, we propose a new paradigm of the parallel EC algorithm by making the first attempt to parallelize the algorithm in the generation level. This idea is inspired by the industrial pipeline technique. Specifically, a kind of EC algorithm called local version particle swarm optimization (PSO) is adopted to implement a pipeline-based parallel PSO (PPPSO, i.e., P3SO). Due to the generation-level parallelism in P3SO, when some particles still perform their evolutionary operations in the current generation, some other particles can simultaneously go to the next generation to carry out the new evolutionary operations, or even go to further next generation(s). The experimental results show that the problem-solving ability of P3SO is not affected while the evolutionary speed has been substantially accelerated in a significant fashion. Therefore, generation-level parallelism is possible in EC algorithms and may have significant potential applications in time-consumption optimization problems. © 2013 IEEE. | - |
dc.format.extent | 12 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | IEEE Advancing Technology for Humanity | - |
dc.title | Generation-Level Parallelism for Evolutionary Computation: A Pipeline-Based Parallel Particle Swarm Optimization | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/TCYB.2020.3028070 | - |
dc.identifier.scopusid | 2-s2.0-85096837984 | - |
dc.identifier.wosid | 000706832000011 | - |
dc.identifier.bibliographicCitation | IEEE Transactions on Cybernetics, v.51, no.10, pp 4848 - 4859 | - |
dc.citation.title | IEEE Transactions on Cybernetics | - |
dc.citation.volume | 51 | - |
dc.citation.number | 10 | - |
dc.citation.startPage | 4848 | - |
dc.citation.endPage | 4859 | - |
dc.type.docType | 정기학술지(Article(Perspective Article포함)) | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Automation & Control Systems | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalWebOfScienceCategory | Automation & Control Systems | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Cybernetics | - |
dc.subject.keywordPlus | ALGORITHM | - |
dc.subject.keywordAuthor | Evolutionary computation (EC) | - |
dc.subject.keywordAuthor | parallel | - |
dc.subject.keywordAuthor | particle swarm optimization (PSO) | - |
dc.subject.keywordAuthor | pipeline technique | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/9248594?arnumber=9248594&SID=EBSCO:edseee | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.