Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Adaptive Semi-Supervised Classifier Ensemble for High Dimensional Data Classification

Full metadata record
DC Field Value Language
dc.contributor.authorYu, Zhiwen-
dc.contributor.authorZhang, Yidong-
dc.contributor.authorYou, Jane-
dc.contributor.authorChen, C. L. Philip-
dc.contributor.authorWong, Hau-San-
dc.contributor.authorHan, Guoqiang-
dc.contributor.authorZhang, Jun-
dc.date.accessioned2023-11-14T01:32:46Z-
dc.date.available2023-11-14T01:32:46Z-
dc.date.issued2019-02-
dc.identifier.issn2168-2267-
dc.identifier.issn2168-2275-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115447-
dc.description.abstractHigh dimensional data classification with very limited labeled training data is a challenging task in the area of data mining. In order to tackle this task, we first propose a feature selection-based semi-supervised classifier ensemble framework (FSCE) to perform high dimensional data classification. Then, we design an adaptive semi-supervised classifier ensemble framework (ASCE) to improve the performance of FSCE. When compared with FSCE, ASCE is characterized by an adaptive feature selection process, an adaptive weighting process (AWP), and an auxiliary training set generation process (ATSGP). The adaptive feature selection process generates a set of compact subspaces based on the selected attributes obtained by the feature selection algorithms, while the AWP associates each basic semi-supervised classifier in the ensemble with a weight value. The ATSGP enlarges the training set with unlabeled samples. In addition, a set of nonparametric tests are adopted to compare multiple semi-supervised classifier ensemble (SSCE) approaches over different datasets. The experiments on 20 high dimensional real-world datasets show that: 1) the two adaptive processes in ASCE are useful for improving the performance of the SSCE approach and 2) ASCE works well on high dimensional datasets with very limited labeled training data, and outperforms most state-of-the-art SSCE approaches.-
dc.format.extent14-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE Advancing Technology for Humanity-
dc.titleAdaptive Semi-Supervised Classifier Ensemble for High Dimensional Data Classification-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TCYB.2017.2761908-
dc.identifier.scopusid2-s2.0-85032739321-
dc.identifier.wosid000456733900001-
dc.identifier.bibliographicCitationIEEE Transactions on Cybernetics, v.49, no.2, pp 366 - 379-
dc.citation.titleIEEE Transactions on Cybernetics-
dc.citation.volume49-
dc.citation.number2-
dc.citation.startPage366-
dc.citation.endPage379-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Cybernetics-
dc.subject.keywordPlusFRAMEWORK-
dc.subject.keywordPlusTUMOR-
dc.subject.keywordPlusILLUMINATION-
dc.subject.keywordPlusCARCINOMAS-
dc.subject.keywordAuthorClassification-
dc.subject.keywordAuthorensemble learning-
dc.subject.keywordAuthorfeature selection-
dc.subject.keywordAuthorhigh dimensional data-
dc.subject.keywordAuthoroptimization-
dc.subject.keywordAuthorsemi-supervised learning-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8085402?arnumber=8085402&SID=EBSCO:edseee-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE