Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Clustering-Based Evolutionary Algorithm for Many-Objective Optimization Problems

Full metadata record
DC Field Value Language
dc.contributor.authorLin, Qiuzhen-
dc.contributor.authorLiu, Songbai-
dc.contributor.authorWong, Ka-Chun-
dc.contributor.authorGong, Maoguo-
dc.contributor.authorCoello Coello, Carlos A.-
dc.contributor.authorChen, Jianyong-
dc.contributor.authorZHANG, Jun-
dc.date.accessioned2023-11-14T01:33:18Z-
dc.date.available2023-11-14T01:33:18Z-
dc.date.issued2019-06-
dc.identifier.issn1089-778X-
dc.identifier.issn1941-0026-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115450-
dc.description.abstractThis paper suggests a novel clustering-based evolutionary algorithm for many-objective optimization problems. Its main idea is to classify the population into a number of clusters, which is expected to solve the difficulty of balancing convergence and diversity in high-dimensional objective space. The individuals showing high similarities on the vector angles are gathered into the same cluster, such that the population's distribution can be well portrayed by the clusters. To efficiently find these clusters, partitional clustering is first used to classify the union population into m main clusters based on the m axis vectors ( m is the number of objectives), and then hierarchical clustering is further run on these m main clusters to get N final clusters ( N is the population size and N>m). At last, in environmental selection, one individual from each of N clusters closest to the axis vectors is selected to maintain diversity, while one individual from each of the other clusters is preferred by a simple convergence indicator to ensure convergence. When tackling some well-known test problems with 5-15 objectives, extensive experiments validate the superiority of our algorithm over six competitive many-objective EAs, especially on problems with incomplete and irregular Pareto-optimal fronts. © 1997-2012 IEEE.-
dc.format.extent15-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.titleA Clustering-Based Evolutionary Algorithm for Many-Objective Optimization Problems-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TEVC.2018.2866927-
dc.identifier.scopusid2-s2.0-85052617999-
dc.identifier.wosid000470018600003-
dc.identifier.bibliographicCitationIEEE Transactions on Evolutionary Computation, v.23, no.3, pp 391 - 405-
dc.citation.titleIEEE Transactions on Evolutionary Computation-
dc.citation.volume23-
dc.citation.number3-
dc.citation.startPage391-
dc.citation.endPage405-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.subject.keywordPlusNSGA-II-
dc.subject.keywordPlusSELECTION-
dc.subject.keywordPlusMOEA/D-
dc.subject.keywordPlusMULTI-
dc.subject.keywordAuthorEvolutionary algorithm (EA)-
dc.subject.keywordAuthorhierarchical clustering-
dc.subject.keywordAuthormany-objective optimization-
dc.subject.keywordAuthorpartitional clustering-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8444681?arnumber=8444681&SID=EBSCO:edseee-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE