Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Historical and Heuristic-Based Adaptive Differential Evolution

Full metadata record
DC Field Value Language
dc.contributor.authorLiu, Xiao-Fang-
dc.contributor.authorZhan, Zhi-Hui-
dc.contributor.authorLin, Ying-
dc.contributor.authorChen, Wei-Neng-
dc.contributor.authorGong, Yue-Jiao-
dc.contributor.authorGu, Tian-Long-
dc.contributor.authorYuan, Hua-Qiang-
dc.contributor.authorZHANG, Jun-
dc.date.accessioned2023-11-14T01:33:40Z-
dc.date.available2023-11-14T01:33:40Z-
dc.date.issued2019-12-
dc.identifier.issn2168-2216-
dc.identifier.issn2168-2232-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115457-
dc.description.abstractAs the mutation strategy and algorithmic parameters in differential evolution (DE) are sensitive to the problems being solved, a hot research topic is to adaptively control the strategy and parameters according to the requirements of the problem. In the literature, most adaptive DE use either historical experiences of the population or heuristic information of the individuals to promote adaptation. In this paper, we develop a novel variant of adaptive DE, utilizing both the historical experience and heuristic information for the adaptation. In this novel historical and heuristic DE (HHDE), each individual dynamically adjusts its mutation strategy and associated parameters not only by learning from previous successful experience of the whole population, but also according to heuristic information related with its own current state. These help the algorithm select a more suitable mutation strategy and determinate better parameters for each individual in different evolutionary stages. The performance of the proposed HHDE is extensively evaluated on 30 benchmark functions with different dimensions. Experimental results confirm the competitiveness of the proposed algorithm to a number of DE variants. © 2013 IEEE.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE Advancing Technology for Humanity-
dc.titleHistorical and Heuristic-Based Adaptive Differential Evolution-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TSMC.2018.2855155-
dc.identifier.scopusid2-s2.0-85051380558-
dc.identifier.wosid000501871600023-
dc.identifier.bibliographicCitationIEEE Transactions on Systems, Man, and Cybernetics: Systems, v.49, no.12, pp 2623 - 2635-
dc.citation.titleIEEE Transactions on Systems, Man, and Cybernetics: Systems-
dc.citation.volume49-
dc.citation.number12-
dc.citation.startPage2623-
dc.citation.endPage2635-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Cybernetics-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusPARAMETERS-
dc.subject.keywordPlusALGORITHM-
dc.subject.keywordPlusADAPTATION-
dc.subject.keywordPlusSELECTION-
dc.subject.keywordPlusENSEMBLE-
dc.subject.keywordAuthorDifferential evolution (DE)-
dc.subject.keywordAuthorheuristic information-
dc.subject.keywordAuthorhistorical experience-
dc.subject.keywordAuthormutation strategy selection-
dc.subject.keywordAuthorparameter adaptation-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8429256?arnumber=8429256&SID=EBSCO:edseee-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE