Near-real-time parameter estimation of an electrical battery model with multiple time constants and SoC-dependent capacitance
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, Wenguan | - |
dc.contributor.author | Chung, Henry Shu-Hung | - |
dc.contributor.author | Zhang, Jun | - |
dc.date.accessioned | 2023-11-24T02:32:52Z | - |
dc.date.available | 2023-11-24T02:32:52Z | - |
dc.date.issued | 2014-11 | - |
dc.identifier.issn | 0885-8993 | - |
dc.identifier.issn | 1941-0107 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115688 | - |
dc.description.abstract | A modified particle swarm optimization algorithm for conducting near-real-time parameter estimation of an electrical model for lithium batteries is presented. The model comprises a dynamic capacitance and a high-order resistor-capacitor network. The algorithm is evaluated on a hardware test bed with two samples of 3.3V, 40Ah, Lithium Iron Phosphate (LiFePO4) battery driven under six different loading patterns. All intrinsic parameters together with the state-of-charge of the battery are estimated by firstly processing the 15-minute samples of the terminal voltage and current. Then, the voltage-current characteristics in the following 15 minutes are predicted. Results show that the extracted parameters can fit the first 15-minute voltage samples with high accuracy. Moreover, the electrical model can predict voltage-current characteristics in the following 15 minutes with the extracted parameters. The study lays foundation for the possibility of applying computational intelligence algorithms for parametric estimation of batteries. © 2014 IEEE. | - |
dc.format.extent | 8 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
dc.title | Near-real-time parameter estimation of an electrical battery model with multiple time constants and SoC-dependent capacitance | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/ECCE.2014.6953942 | - |
dc.identifier.scopusid | 2-s2.0-84934268770 | - |
dc.identifier.wosid | 000339619400025 | - |
dc.identifier.bibliographicCitation | 2014 IEEE Energy Conversion Congress and Exposition (ECCE), v.29, no.11, pp 3977 - 3984 | - |
dc.citation.title | 2014 IEEE Energy Conversion Congress and Exposition (ECCE) | - |
dc.citation.volume | 29 | - |
dc.citation.number | 11 | - |
dc.citation.startPage | 3977 | - |
dc.citation.endPage | 3984 | - |
dc.type.docType | Conference paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | sci | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.subject.keywordPlus | OPTIMAL ENERGY MANAGEMENT | - |
dc.subject.keywordPlus | LI-ION BATTERIES | - |
dc.subject.keywordPlus | DESIGN | - |
dc.subject.keywordPlus | SYSTEM | - |
dc.subject.keywordPlus | STATE | - |
dc.subject.keywordAuthor | Battery model | - |
dc.subject.keywordAuthor | battery storage system | - |
dc.subject.keywordAuthor | online parameter estimation | - |
dc.subject.keywordAuthor | particle swarm optimization (PSO) | - |
dc.subject.keywordAuthor | state of charge (SOC) | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/6953942 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.