Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Time-Offset ALOHA With SIC

Full metadata record
DC Field Value Language
dc.contributor.authorSeo, Jun-Bae-
dc.contributor.authorHu, Yangqian-
dc.contributor.authorJin, Hu-
dc.date.accessioned2023-11-24T02:37:42Z-
dc.date.available2023-11-24T02:37:42Z-
dc.date.issued2023-11-
dc.identifier.issn1536-1233-
dc.identifier.issn1558-0660-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115743-
dc.description.abstractInternet-of-Things (IoT) applications for real-time control gradually increase and become computationally demanding. To provide better quality-of-service (QoS) in random access (RA) system based on slotted ALOHA (S-ALOHA), this work proposes a novel S-ALOHA system with cross-slot successive interference cancellation (SIC). To facilitate SIC, we design each slot with several time offsets (TOs) and one packet transmission time, where the length of overall TOs is a fraction of a packet transmission time. Users (re)transmit at the boundary of a TO randomly selected. This enables the base station (BS) to distinguish who makes the first and last transmissions in a collision slot and ask immediate retransmissions from them in the subsequent one or two slots. With these retransmitted packets, the BS performs SIC for the previously collided packets. We analyze the system throughput and the distribution of RA delay. The results show that the proposed system can achieve throughput from 0.5 (packets per packet transmission time) at minimum to 0.856 at maximum, depending on the number of TOs and the length of TO. In addition, to run this system stably, we propose a Bayesian-optimized backoff algorithm that enables users to use throughput-optimal (re)transmission probability. It is demonstrated that the proposed backoff algorithms can achieve the throughput close to genie-aided (GA) system.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.titleTime-Offset ALOHA With SIC-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TMC.2022.3197208-
dc.identifier.scopusid2-s2.0-85136102097-
dc.identifier.wosid001080928800038-
dc.identifier.bibliographicCitationIEEE Transactions on Mobile Computing, v.22, no.11, pp 6817 - 6829-
dc.citation.titleIEEE Transactions on Mobile Computing-
dc.citation.volume22-
dc.citation.number11-
dc.citation.startPage6817-
dc.citation.endPage6829-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordPlusCODED SLOTTED ALOHA-
dc.subject.keywordPlusSUCCESSIVE INTERFERENCE CANCELLATION-
dc.subject.keywordPlusNONORTHOGONAL RANDOM-ACCESS-
dc.subject.keywordPlusFRAMELESS ALOHA-
dc.subject.keywordPlusPERFORMANCE ASSESSMENT-
dc.subject.keywordPlusDIVERSITY ALOHA-
dc.subject.keywordPlusMULTIPLE-ACCESS-
dc.subject.keywordPlusNOMA-
dc.subject.keywordPlusINFORMATION-
dc.subject.keywordPlusCRDSA-
dc.subject.keywordAuthorOnline control-
dc.subject.keywordAuthorrandom access-
dc.subject.keywordAuthorrenewal theorem-
dc.subject.keywordAuthorslotted ALOHA-
dc.subject.keywordAuthortime offset-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9852286-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher JIN, HU photo

JIN, HU
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE