Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Learning-aided Evolution for Optimization

Full metadata record
DC Field Value Language
dc.contributor.authorZhan, Zhi-Hui-
dc.contributor.authorLi, Jian-Yu-
dc.contributor.authorKwong, Sam-
dc.contributor.authorJun ZHANG-
dc.date.accessioned2023-11-24T02:38:39Z-
dc.date.available2023-11-24T02:38:39Z-
dc.date.issued2023-12-
dc.identifier.issn1089-778X-
dc.identifier.issn1941-0026-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115763-
dc.description.abstractLearning and optimization are the two essential abilities of human beings for problem solving. Similarly, computer scientists have made great efforts to design artificial neural network (ANN) and evolutionary computation (EC) to simulate the learning ability and the optimization ability for solving real-world problems, respectively. These have been two essential branches in artificial intelligence (AI) and computer science. However, in humans, learning and optimization are usually integrated together for problem solving. Therefore, how to efficiently integrate these two abilities together to develop powerful AI remains a significant but challenging issue. Motivated by this, this paper proposes a novel learning-aided evolutionary optimization (LEO) framework that plus learning and evolution for solving optimization problems. The LEO is integrated with the evolution knowledge learned by ANN from the evolution process of EC to promote optimization efficiency. The LEO framework is applied to both classical EC algorithms and some state-of-the-art EC algorithms including a champion algorithm, with benchmarking against the IEEE Congress on Evolutionary Computation competition data. The experimental results show that the LEO can significantly enhance the existing EC algorithms to better solve both single-objective and multi-/many-objective global optimization problems, suggesting that learning plus evolution is more intelligent for problem solving. Moreover, the experimental results have also validated the time efficiency of the LEO, where the additional time cost for using LEO is greatly deserved. Therefore, the promising LEO can lead to a new and more efficient paradigm for EC algorithms to solve global optimization problems by plus learning and evolution. Author-
dc.format.extent15-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.titleLearning-aided Evolution for Optimization-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TEVC.2022.3232776-
dc.identifier.scopusid2-s2.0-85146242781-
dc.identifier.wosid001125199200018-
dc.identifier.bibliographicCitationIEEE Transactions on Evolutionary Computation, v.27, no.6, pp 1794 - 1808-
dc.citation.titleIEEE Transactions on Evolutionary Computation-
dc.citation.volume27-
dc.citation.number6-
dc.citation.startPage1794-
dc.citation.endPage1808-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.subject.keywordPlusPARTICLE SWARM-
dc.subject.keywordPlusCOMPUTATION-
dc.subject.keywordPlusALGORITHM-
dc.subject.keywordPlusSTRATEGY-
dc.subject.keywordPlusFASTER-
dc.subject.keywordAuthorArtificial intelligence-
dc.subject.keywordAuthorartificial neural network-
dc.subject.keywordAuthorArtificial neural networks-
dc.subject.keywordAuthorBenchmark testing-
dc.subject.keywordAuthordifferential evolution-
dc.subject.keywordAuthorEvolution (biology)-
dc.subject.keywordAuthorEvolutionary computation-
dc.subject.keywordAuthorLearning systems-
dc.subject.keywordAuthorlearning-aided evolution-
dc.subject.keywordAuthormany-objective optimization-
dc.subject.keywordAuthormulti-objective optimization-
dc.subject.keywordAuthorOptimization-
dc.subject.keywordAuthorparticle swarm optimization-
dc.subject.keywordAuthorProblem-solving-
dc.subject.keywordAuthorsingle-objective optimization-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/10002945-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE