Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Elastic Differential Evolution for Automatic Data Clustering

Full metadata record
DC Field Value Language
dc.contributor.authorChen, Jun-Xian-
dc.contributor.authorGong, Yue-Jiao-
dc.contributor.authorChen, Wei-Neng-
dc.contributor.authorLi, Mengting-
dc.contributor.authorZHANG, Jun-
dc.date.accessioned2023-11-24T02:38:41Z-
dc.date.available2023-11-24T02:38:41Z-
dc.date.issued2021-08-
dc.identifier.issn2168-2267-
dc.identifier.issn2168-2275-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115764-
dc.description.abstractIn many practical applications, it is crucial to perform automatic data clustering without knowing the number of clusters in advance. The evolutionary computation paradigm is good at dealing with this task, but the existing algorithms encounter several deficiencies, such as the encoding redundancy and the cross-dimension learning error. In this article, we propose a novel elastic differential evolution algorithm to solve automatic data clustering. Unlike traditional methods, the proposed algorithm considers each clustering layout as a whole and adapts the cluster number and cluster centroids inherently through the variable-length encoding and the evolution operators. The encoding scheme contains no redundancy. To enable the individuals of different lengths to exchange information properly, we develop a subspace crossover and a two-phase mutation operator. The operators employ the basic method of differential evolution and, in addition, they consider the spatial information of cluster layouts to generate offspring solutions. Particularly, each dimension of the parameter vector interacts with its correlated dimensions, which not only adapts the cluster number but also avoids the cross-dimension learning error. The experimental results show that our algorithm outperforms the state-of-the-art algorithms that it is able to identify the correct number of clusters and obtain a good cluster validation value. © 2013 IEEE.-
dc.format.extent14-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE Advancing Technology for Humanity-
dc.titleElastic Differential Evolution for Automatic Data Clustering-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TCYB.2019.2941707-
dc.identifier.scopusid2-s2.0-85112704260-
dc.identifier.wosid000681200300026-
dc.identifier.bibliographicCitationIEEE Transactions on Cybernetics, v.51, no.8, pp 4134 - 4147-
dc.citation.titleIEEE Transactions on Cybernetics-
dc.citation.volume51-
dc.citation.number8-
dc.citation.startPage4134-
dc.citation.endPage4147-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Cybernetics-
dc.subject.keywordPlusEXPRESSION MICROARRAY DATA-
dc.subject.keywordPlusGENETIC ALGORITHM-
dc.subject.keywordPlusNUMBER-
dc.subject.keywordPlusMETHODOLOGY-
dc.subject.keywordPlusENSEMBLE-
dc.subject.keywordAuthorClustering-
dc.subject.keywordAuthordifferential evolution-
dc.subject.keywordAuthorelastic encoding-
dc.subject.keywordAuthorsubspace-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8864092?arnumber=8864092&SID=EBSCO:edseee-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE