Multiobjective Semisupervised Classifier Ensemble
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yu, Zhiwen | - |
dc.contributor.author | Zhang, Yidong | - |
dc.contributor.author | Chen, C. L. Philip | - |
dc.contributor.author | You, Jane | - |
dc.contributor.author | Wong, Hau-San | - |
dc.contributor.author | Dai, Dan | - |
dc.contributor.author | Wu, Si | - |
dc.contributor.author | ZHANG, Jun | - |
dc.date.accessioned | 2023-11-24T02:38:57Z | - |
dc.date.available | 2023-11-24T02:38:57Z | - |
dc.date.issued | 2019-06 | - |
dc.identifier.issn | 2168-2267 | - |
dc.identifier.issn | 2168-2275 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115771 | - |
dc.description.abstract | Classification of high-dimensional data with very limited labels is a challenging task in the field of data mining and machine learning. In this paper, we propose the multiobjective semisupervised classifier ensemble (MOSSCE) approach to address this challenge. Specifically, a multiobjective subspace selection process (MOSSP) in MOSSCE is first designed to generate the optimal combination of feature subspaces. Three objective functions are then proposed for MOSSP, which include the relevance of features, the redundancy between features, and the data reconstruction error. Then, MOSSCE generates an auxiliary training set based on the sample confidence to improve the performance of the classifier ensemble. Finally, the training set, combined with the auxiliary training set, is used to select the optimal combination of basic classifiers in the ensemble, train the classifier ensemble, and generate the final result. In addition, diversity analysis of the ensemble learning process is applied, and a set of nonparametric statistical tests is adopted for the comparison of semisupervised classification approaches on multiple datasets. The experiments on 12 gene expression datasets and two large image datasets show that MOSSCE has a better performance than other state-of-the-art semisupervised classifiers on high-dimensional data. © 2013 IEEE. | - |
dc.format.extent | 14 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | IEEE Advancing Technology for Humanity | - |
dc.title | Multiobjective Semisupervised Classifier Ensemble | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/TCYB.2018.2824299 | - |
dc.identifier.scopusid | 2-s2.0-85045736512 | - |
dc.identifier.wosid | 000463030000025 | - |
dc.identifier.bibliographicCitation | IEEE Transactions on Cybernetics, v.49, no.6, pp 2280 - 2293 | - |
dc.citation.title | IEEE Transactions on Cybernetics | - |
dc.citation.volume | 49 | - |
dc.citation.number | 6 | - |
dc.citation.startPage | 2280 | - |
dc.citation.endPage | 2293 | - |
dc.type.docType | 정기학술지(Article(Perspective Article포함)) | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | sci | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Automation & Control Systems | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalWebOfScienceCategory | Automation & Control Systems | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Cybernetics | - |
dc.subject.keywordPlus | RANDOM SUBSPACE METHOD | - |
dc.subject.keywordPlus | GENE-EXPRESSION | - |
dc.subject.keywordPlus | MOLECULAR CLASSIFICATION | - |
dc.subject.keywordPlus | FRAMEWORK | - |
dc.subject.keywordPlus | CARCINOMAS | - |
dc.subject.keywordPlus | PREDICTION | - |
dc.subject.keywordPlus | MULTIVIEW | - |
dc.subject.keywordPlus | CANCER | - |
dc.subject.keywordAuthor | Ensemble learning | - |
dc.subject.keywordAuthor | feature selection | - |
dc.subject.keywordAuthor | multiobjective optimization | - |
dc.subject.keywordAuthor | semisupervised learning | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/8344441 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.