Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Multiobjective Semisupervised Classifier Ensemble

Full metadata record
DC Field Value Language
dc.contributor.authorYu, Zhiwen-
dc.contributor.authorZhang, Yidong-
dc.contributor.authorChen, C. L. Philip-
dc.contributor.authorYou, Jane-
dc.contributor.authorWong, Hau-San-
dc.contributor.authorDai, Dan-
dc.contributor.authorWu, Si-
dc.contributor.authorZHANG, Jun-
dc.date.accessioned2023-11-24T02:38:57Z-
dc.date.available2023-11-24T02:38:57Z-
dc.date.issued2019-06-
dc.identifier.issn2168-2267-
dc.identifier.issn2168-2275-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115771-
dc.description.abstractClassification of high-dimensional data with very limited labels is a challenging task in the field of data mining and machine learning. In this paper, we propose the multiobjective semisupervised classifier ensemble (MOSSCE) approach to address this challenge. Specifically, a multiobjective subspace selection process (MOSSP) in MOSSCE is first designed to generate the optimal combination of feature subspaces. Three objective functions are then proposed for MOSSP, which include the relevance of features, the redundancy between features, and the data reconstruction error. Then, MOSSCE generates an auxiliary training set based on the sample confidence to improve the performance of the classifier ensemble. Finally, the training set, combined with the auxiliary training set, is used to select the optimal combination of basic classifiers in the ensemble, train the classifier ensemble, and generate the final result. In addition, diversity analysis of the ensemble learning process is applied, and a set of nonparametric statistical tests is adopted for the comparison of semisupervised classification approaches on multiple datasets. The experiments on 12 gene expression datasets and two large image datasets show that MOSSCE has a better performance than other state-of-the-art semisupervised classifiers on high-dimensional data. © 2013 IEEE.-
dc.format.extent14-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE Advancing Technology for Humanity-
dc.titleMultiobjective Semisupervised Classifier Ensemble-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TCYB.2018.2824299-
dc.identifier.scopusid2-s2.0-85045736512-
dc.identifier.wosid000463030000025-
dc.identifier.bibliographicCitationIEEE Transactions on Cybernetics, v.49, no.6, pp 2280 - 2293-
dc.citation.titleIEEE Transactions on Cybernetics-
dc.citation.volume49-
dc.citation.number6-
dc.citation.startPage2280-
dc.citation.endPage2293-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Cybernetics-
dc.subject.keywordPlusRANDOM SUBSPACE METHOD-
dc.subject.keywordPlusGENE-EXPRESSION-
dc.subject.keywordPlusMOLECULAR CLASSIFICATION-
dc.subject.keywordPlusFRAMEWORK-
dc.subject.keywordPlusCARCINOMAS-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusMULTIVIEW-
dc.subject.keywordPlusCANCER-
dc.subject.keywordAuthorEnsemble learning-
dc.subject.keywordAuthorfeature selection-
dc.subject.keywordAuthormultiobjective optimization-
dc.subject.keywordAuthorsemisupervised learning-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8344441-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE