Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Generic Archive Technique for Enhancing the Niching Performance of Evolutionary Computation

Full metadata record
DC Field Value Language
dc.contributor.authorZhang, Yu-Hui-
dc.contributor.authorGong, Yue-Jiao-
dc.contributor.authorChen, Wei-Neng-
dc.contributor.authorZhan, Zhi-Hui-
dc.contributor.authorZhang, Jun-
dc.date.accessioned2023-12-08T09:32:53Z-
dc.date.available2023-12-08T09:32:53Z-
dc.date.issued2015-01-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115886-
dc.description.abstractThe performance of a multimodal evolutionary algorithm is highly sensitive to the setting of population size. This paper introduces a generic archive technique to reduce the importance of properly setting the population size parameter. The proposed archive technique contains two components: subpopulation identification and convergence detection. The first component is used to identify subpopulations in a number of individuals while the second one is used to determine whether a subpopulation is converged. By using the two components, converged subpopulations are identified, and then, individuals in the converged subpopulations are stored in an external archive and re-initialized to search for other optima. We integrate the archive technique with several state-of-the-art PSO-based multimodal algorithms. Experiments are carried out on a recently proposed multimodal problem set to investigate the effect of the archive technique. The experimental results show that the proposed method can reduce the influence of the population size parameter and improve the performance of multimodal algorithms.-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-
dc.titleA Generic Archive Technique for Enhancing the Niching Performance of Evolutionary Computation-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/SIS.2014.7011784-
dc.identifier.scopusid2-s2.0-84923072421-
dc.identifier.wosid000364912700018-
dc.identifier.bibliographicCitation2014 IEEE Symposium on Swarm Intelligence, pp 113 - 120-
dc.citation.title2014 IEEE Symposium on Swarm Intelligence-
dc.citation.startPage113-
dc.citation.endPage120-
dc.type.docTypeProceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.subject.keywordPlusPARTICLE SWARM OPTIMIZER-
dc.subject.keywordPlusMULTIMODAL OPTIMIZATION-
dc.subject.keywordAuthorarchive-
dc.subject.keywordAuthormultimodal optimization-
dc.subject.keywordAuthorniching technique-
dc.subject.keywordAuthorParticle Swarm Optimization-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/7011784-
Files in This Item
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE