Novel leaning feed-forward controller for accurate robot trajectory tracking
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bi Daowei | - |
dc.contributor.author | Wang, Gaoli | - |
dc.contributor.author | Zhang, Jun | - |
dc.contributor.author | Xue, Qiang | - |
dc.date.accessioned | 2023-12-08T09:33:28Z | - |
dc.date.available | 2023-12-08T09:33:28Z | - |
dc.date.issued | 2005-08 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115931 | - |
dc.description.abstract | This paper presents a novel learning feed-forward controller design approach for accurate robotics trajectory tracking. Based on the joint nonlinear dynamics characteristics, a model-free learning algorithm based on Support Vector Machine (SVM) is implemented for friction model identification. The experimental results verified that SVM based learning feed-forward controller is a good approach for high performance industrial robot trajectory tracking, It can achieve low tracking error comparing with traditional trajectory tracking control method. | - |
dc.format.extent | 4 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Springer Verlag | - |
dc.title | Novel leaning feed-forward controller for accurate robot trajectory tracking | - |
dc.type | Article | - |
dc.publisher.location | 독일 | - |
dc.identifier.doi | 10.1007/11539117_39 | - |
dc.identifier.scopusid | 2-s2.0-26844492589 | - |
dc.identifier.wosid | 000232222500039 | - |
dc.identifier.bibliographicCitation | Advances in Natural Computation First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005, Proceedings, Part II, v.3611, pp 266 - 269 | - |
dc.citation.title | Advances in Natural Computation First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005, Proceedings, Part II | - |
dc.citation.volume | 3611 | - |
dc.citation.startPage | 266 | - |
dc.citation.endPage | 269 | - |
dc.type.docType | Article; Proceedings Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Theory & Methods | - |
dc.identifier.url | https://link.springer.com/chapter/10.1007/11539117_39?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.