Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Novel leaning feed-forward controller for accurate robot trajectory tracking

Full metadata record
DC Field Value Language
dc.contributor.authorBi Daowei-
dc.contributor.authorWang, Gaoli-
dc.contributor.authorZhang, Jun-
dc.contributor.authorXue, Qiang-
dc.date.accessioned2023-12-08T09:33:28Z-
dc.date.available2023-12-08T09:33:28Z-
dc.date.issued2005-08-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115931-
dc.description.abstractThis paper presents a novel learning feed-forward controller design approach for accurate robotics trajectory tracking. Based on the joint nonlinear dynamics characteristics, a model-free learning algorithm based on Support Vector Machine (SVM) is implemented for friction model identification. The experimental results verified that SVM based learning feed-forward controller is a good approach for high performance industrial robot trajectory tracking, It can achieve low tracking error comparing with traditional trajectory tracking control method.-
dc.format.extent4-
dc.language영어-
dc.language.isoENG-
dc.publisherSpringer Verlag-
dc.titleNovel leaning feed-forward controller for accurate robot trajectory tracking-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1007/11539117_39-
dc.identifier.scopusid2-s2.0-26844492589-
dc.identifier.wosid000232222500039-
dc.identifier.bibliographicCitationAdvances in Natural Computation First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005, Proceedings, Part II, v.3611, pp 266 - 269-
dc.citation.titleAdvances in Natural Computation First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005, Proceedings, Part II-
dc.citation.volume3611-
dc.citation.startPage266-
dc.citation.endPage269-
dc.type.docTypeArticle; Proceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.identifier.urlhttps://link.springer.com/chapter/10.1007/11539117_39?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot-
Files in This Item
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE