Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

An Isoline Genetic Algorithm

Full metadata record
DC Field Value Language
dc.contributor.authorLin, Ying-
dc.contributor.authorZhang, Jun-
dc.date.accessioned2023-12-08T09:33:42Z-
dc.date.available2023-12-08T09:33:42Z-
dc.date.issued2009-05-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115959-
dc.description.abstractGenetic algorithms (GAs) are classical evolutionary computation methods, which have a wild application prospect. This paper proposes an improved genetic algorithm, named the isoline genetic algorithm (IGA), for numerical optimization. The proposed algorithm utitizes the population to model isolines of fitness in the search space. These isolines can be used to depict the fitness landscape in the current search area and direct the search process. IGA predicts the location of the peak by calculating the centroids of isolines, which will be probabilistically accepted into the population. Numerical experiments on thirteen benchmark functions reveal the effectiveness and efficiency of IGA. The experimental results indicate improvements in both convergence speed and solution accuracy.-
dc.format.extent6-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-
dc.titleAn Isoline Genetic Algorithm-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/CEC.2009.4983186-
dc.identifier.scopusid2-s2.0-70449922628-
dc.identifier.wosid000274803100264-
dc.identifier.bibliographicCitation2009 IEEE Congress on Evolutionary Computation, pp 2002 - 2007-
dc.citation.title2009 IEEE Congress on Evolutionary Computation-
dc.citation.startPage2002-
dc.citation.endPage2007-
dc.type.docTypeProceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.subject.keywordPlusGLOBAL NUMERICAL OPTIMIZATION-
dc.subject.keywordPlusSCHEDULING PROBLEMS-
dc.subject.keywordPlusLOCAL SEARCH-
dc.subject.keywordPlusASSIGNMENT-
dc.subject.keywordPlusNETWORKS-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/4983186-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE