An Isoline Genetic Algorithm
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lin, Ying | - |
dc.contributor.author | Zhang, Jun | - |
dc.date.accessioned | 2023-12-08T09:33:42Z | - |
dc.date.available | 2023-12-08T09:33:42Z | - |
dc.date.issued | 2009-05 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115959 | - |
dc.description.abstract | Genetic algorithms (GAs) are classical evolutionary computation methods, which have a wild application prospect. This paper proposes an improved genetic algorithm, named the isoline genetic algorithm (IGA), for numerical optimization. The proposed algorithm utitizes the population to model isolines of fitness in the search space. These isolines can be used to depict the fitness landscape in the current search area and direct the search process. IGA predicts the location of the peak by calculating the centroids of isolines, which will be probabilistically accepted into the population. Numerical experiments on thirteen benchmark functions reveal the effectiveness and efficiency of IGA. The experimental results indicate improvements in both convergence speed and solution accuracy. | - |
dc.format.extent | 6 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | IEEE | - |
dc.title | An Isoline Genetic Algorithm | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/CEC.2009.4983186 | - |
dc.identifier.scopusid | 2-s2.0-70449922628 | - |
dc.identifier.wosid | 000274803100264 | - |
dc.identifier.bibliographicCitation | 2009 IEEE Congress on Evolutionary Computation, pp 2002 - 2007 | - |
dc.citation.title | 2009 IEEE Congress on Evolutionary Computation | - |
dc.citation.startPage | 2002 | - |
dc.citation.endPage | 2007 | - |
dc.type.docType | Proceedings Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Interdisciplinary Applications | - |
dc.relation.journalWebOfScienceCategory | Engineering, Multidisciplinary | - |
dc.subject.keywordPlus | GLOBAL NUMERICAL OPTIMIZATION | - |
dc.subject.keywordPlus | SCHEDULING PROBLEMS | - |
dc.subject.keywordPlus | LOCAL SEARCH | - |
dc.subject.keywordPlus | ASSIGNMENT | - |
dc.subject.keywordPlus | NETWORKS | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/4983186 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.