Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Keyword Combination Extraction in Text Categorization Based on Ant Colony Optimization

Full metadata record
DC Field Value Language
dc.contributor.authorYu, Zi-jun-
dc.contributor.authorWu, Wei-gang-
dc.contributor.authorXiao, Jing-
dc.contributor.authorZhang, Jun-
dc.contributor.authorHuang, Rui-Zhang-
dc.contributor.authorLiu, Ou-
dc.date.accessioned2023-12-08T09:33:44Z-
dc.date.available2023-12-08T09:33:44Z-
dc.date.issued2009-12-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115962-
dc.description.abstractDue to the increasing number of documents in digital form, the automated text categorization (TC) has become more and more promising in the last ten years. A TC system can automatically assign a document with the most suitable category, but the reason for such an assignment is usually unknown by users. To make the TC system be interpretable, it is necessary to select a group of keywords, or termed a keyword combination, to describe each text category. In this paper, we propose a novel algorithm, keyword combination extraction based on ant colony optimization (KCEACO), to search the optimal keyword combination of a target category. By extending the traditional feature selection techniques, an evaluation function is designed for evaluating a keyword combination. This function takes into account the relationships among different keywords. Experimental results show that KCEACO can efficiently find the optimal keyword combination from a large number of candidate combinations.-
dc.format.extent6-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-
dc.titleKeyword Combination Extraction in Text Categorization Based on Ant Colony Optimization-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/SoCPaR.2009.90-
dc.identifier.scopusid2-s2.0-77649319918-
dc.identifier.wosid000277207700076-
dc.identifier.bibliographicCitation2009 International Conference of Soft Computing and Pattern Recognition, pp 430 - 435-
dc.citation.title2009 International Conference of Soft Computing and Pattern Recognition-
dc.citation.startPage430-
dc.citation.endPage435-
dc.type.docTypeProceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordAuthorant colony optimization-
dc.subject.keywordAuthorconcept learning-
dc.subject.keywordAuthorfeature selection-
dc.subject.keywordAuthorkeyword combination extraction-
dc.subject.keywordAuthortext categorization-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/5368629-
Files in This Item
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE