Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Chaotic time series prediction using a neuro-fuzzy system with time-delay coordinates

Full metadata record
DC Field Value Language
dc.contributor.authorZhang, Jun-
dc.contributor.authorChung, Henry Shu-Hung-
dc.contributor.authorLo, Wai-Lun-
dc.date.accessioned2023-12-08T09:33:46Z-
dc.date.available2023-12-08T09:33:46Z-
dc.date.issued2008-07-
dc.identifier.issn1041-4347-
dc.identifier.issn1558-2191-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115966-
dc.description.abstractThis paper presents an investigation into the use of the delay coordinate embedding technique in the multi-input-multioutput-adaptive-network-based fuzzy inference system (MANFIS) for chaotic time series prediction. The inputs to the MANFIS are embedded-phase-space (EPS) vectors preprocessed from the time series under test, while the output time series is extracted from the output EPS vectors from the MANFIS. A moving root-mean-square error is used to monitor the error over the prediction horizon and to tune the membership functions in the MANFIS. With the inclusion of the EPS preprocessing step, the prediction performance of the MANFIS is improved significantly. The proposed method has been tested with one periodic function and two chaotic functions including Mackey-Glass chaotic time series and Duffing forced-oscillation system. The prediction performances with and without EPS preprocessing are statistically compared by using the t-test method. The results show that EPS preprocessing can help improve the prediction performance of a MANFIS significantly.-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.titleChaotic time series prediction using a neuro-fuzzy system with time-delay coordinates-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TKDE.2008.35-
dc.identifier.scopusid2-s2.0-44649136064-
dc.identifier.wosid000256017300007-
dc.identifier.bibliographicCitationIEEE Transactions on Knowledge and Data Engineering, v.20, no.7, pp 956 - 964-
dc.citation.titleIEEE Transactions on Knowledge and Data Engineering-
dc.citation.volume20-
dc.citation.number7-
dc.citation.startPage956-
dc.citation.endPage964-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusNOISE-
dc.subject.keywordAuthorchaotic time series prediction-
dc.subject.keywordAuthorneuro-fuzzy systems-
dc.subject.keywordAuthortime-delay coordinate embedding-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/4445673-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE