Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

New Evaluation Criteria for the Convergence of Continuous Evolutionary Algorithms

Full metadata record
DC Field Value Language
dc.contributor.authorLin, Ying-
dc.contributor.authorHuang, Jian-
dc.contributor.authorZhang, Jun-
dc.date.accessioned2023-12-08T09:33:48Z-
dc.date.available2023-12-08T09:33:48Z-
dc.date.issued2008-06-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115971-
dc.description.abstractThe first hitting time (FHT) plays an important role in convergence evaluation for evolutionary algorithms. However, the current criteria of the FHT are mostly under a hypothesis that never has been testified: the FHT subjects to the normal distribution. Aiming at more convincible evaluations, this paper investigates the distribution of the FHT through a goodness-of-fit test and discovers an unexpected result. Based on this result, this paper proposes a new set of criteria, which utilizes two types of relative frequency histograms. This paper validates the proposed criteria on the optimization problem of benchmark functions by the standard genetic algorithm (SGA) and the particle swarm optimization (PSO). The experiments show that the proposed criteria are effective to evaluate the convergent speed and the convergent stability of the evolutionary algorithms.-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-
dc.titleNew Evaluation Criteria for the Convergence of Continuous Evolutionary Algorithms-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/CEC.2008.4631123-
dc.identifier.scopusid2-s2.0-55749109690-
dc.identifier.wosid000263406501121-
dc.identifier.bibliographicCitation2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp 2431 - 2438-
dc.citation.title2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)-
dc.citation.startPage2431-
dc.citation.endPage2438-
dc.type.docTypeProceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.subject.keywordPlusPOPULATION-
dc.subject.keywordPlusTIME-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/4631123-
Files in This Item
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE