Identification of Video Game Addiction Using Heart-Rate Variability Parameters
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Jung-Yong | - |
dc.contributor.author | Kim, Hea-Sol | - |
dc.contributor.author | Kim, Dong-Joon | - |
dc.contributor.author | Im, Sung-Kyun | - |
dc.contributor.author | Kim, Mi-Sook | - |
dc.date.accessioned | 2023-12-11T08:30:16Z | - |
dc.date.available | 2023-12-11T08:30:16Z | - |
dc.date.issued | 2021-07 | - |
dc.identifier.issn | 1424-8220 | - |
dc.identifier.issn | 1424-3210 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/116260 | - |
dc.description.abstract | The purpose of this study is to determine heart rate variability (HRV) parameters that can quantitatively characterize game addiction by using electrocardiograms (ECGs). 23 subjects were classified into two groups prior to the experiment, 11 game-addicted subjects, and 12 non-addicted subjects, using questionnaires (CIUS and IAT). Various HRV parameters were tested to identify the addicted subject. The subjects played the League of Legends game for 30-40 min. The experimenter measured ECG during the game at various window sizes and specific events. Moreover, correlation and factor analyses were used to find the most effective parameters. A logistic regression equation was formed to calculate the accuracy in diagnosing addicted and non-addicted subjects. The most accurate set of parameters was found to be pNNI20, RMSSD, and LF in the 30 s after the "being killed" event. The logistic regression analysis provided an accuracy of 69.3% to 70.3%. AUC values in this study ranged from 0.654 to 0.677. This study can be noted as an exploratory step in the quantification of game addiction based on the stress response that could be used as an objective diagnostic method in the future. | - |
dc.format.extent | 13 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | - |
dc.title | Identification of Video Game Addiction Using Heart-Rate Variability Parameters | - |
dc.type | Article | - |
dc.publisher.location | 스위스 | - |
dc.identifier.doi | 10.3390/s21144683 | - |
dc.identifier.scopusid | 2-s2.0-85109218738 | - |
dc.identifier.wosid | 000677014100001 | - |
dc.identifier.bibliographicCitation | Sensors, v.21, no.14, pp 1 - 13 | - |
dc.citation.title | Sensors | - |
dc.citation.volume | 21 | - |
dc.citation.number | 14 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 13 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Instruments & Instrumentation | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Analytical | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.relation.journalWebOfScienceCategory | Instruments & Instrumentation | - |
dc.subject.keywordPlus | MENTAL STRESS | - |
dc.subject.keywordAuthor | HRV parameter | - |
dc.subject.keywordAuthor | game addiction | - |
dc.subject.keywordAuthor | League of Legends | - |
dc.subject.keywordAuthor | stress response | - |
dc.subject.keywordAuthor | sensitivity | - |
dc.subject.keywordAuthor | specificity | - |
dc.subject.keywordAuthor | logistic regression | - |
dc.identifier.url | https://www.scopus.com/record/display.uri?eid=2-s2.0-85109218738&origin=inward&txGid=a96476cc3c10d63eedd84be8b422b452#indexed-keywords | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.