Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Kernel parameter optimization for kernel-based LDA methods

Full metadata record
DC Field Value Language
dc.contributor.authorHuang, Jian-
dc.contributor.authorChen, Xiaoming-
dc.contributor.authorYuen, P.C.-
dc.contributor.authorZhang, Jun-
dc.contributor.authorChen, W.S.-
dc.contributor.authorLai, J.H.-
dc.date.accessioned2024-01-20T09:02:17Z-
dc.date.available2024-01-20T09:02:17Z-
dc.date.issued2008-09-
dc.identifier.issn2161-4393-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/117822-
dc.description.abstractKernel approach has been employed to solve classification problem with complex distribution by mapping the input space to higher dimensional feature space. However, one of the crucial factors in the Kernel approach is the choosing of kernel parameters which highly affect the performance and stability of the kernel-based learning methods. In view of this limitation, this paper adopts the Eigenvalue Stability Bounded Margin Maximization (ESBMM) algorithm to automatically tune the multiple kernel parameters for Kernel-based LDA methods. To demonstrate its effectiveness, the ESBMM algorithm has been extended and applied on two existing kernelbased LDA methods. Experimental results show that after applying the ESBMM algorithm, the performance of these two methods are both improved. © 2008 IEEE.-
dc.format.extent7-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-
dc.titleKernel parameter optimization for kernel-based LDA methods-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/IJCNN.2008.4634350-
dc.identifier.scopusid2-s2.0-56349111496-
dc.identifier.wosid000263827202110-
dc.identifier.bibliographicCitation2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp 3840 - 3846-
dc.citation.title2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)-
dc.citation.startPage3840-
dc.citation.endPage3846-
dc.type.docTypeConference paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Cybernetics-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusFACE-RECOGNITION-
dc.subject.keywordPlusFISHER DISCRIMINANT-
dc.subject.keywordPlusALGORITHMS-
dc.subject.keywordPlusPOSE-
dc.subject.keywordAuthorFace recognition-
dc.subject.keywordAuthorKernel fisher discriminant-
dc.subject.keywordAuthorKernel parameter-
dc.subject.keywordAuthorStability-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/4634350-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE