Kernel parameter optimization for kernel-based LDA methods
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Huang, Jian | - |
dc.contributor.author | Chen, Xiaoming | - |
dc.contributor.author | Yuen, P.C. | - |
dc.contributor.author | Zhang, Jun | - |
dc.contributor.author | Chen, W.S. | - |
dc.contributor.author | Lai, J.H. | - |
dc.date.accessioned | 2024-01-20T09:02:17Z | - |
dc.date.available | 2024-01-20T09:02:17Z | - |
dc.date.issued | 2008-09 | - |
dc.identifier.issn | 2161-4393 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/117822 | - |
dc.description.abstract | Kernel approach has been employed to solve classification problem with complex distribution by mapping the input space to higher dimensional feature space. However, one of the crucial factors in the Kernel approach is the choosing of kernel parameters which highly affect the performance and stability of the kernel-based learning methods. In view of this limitation, this paper adopts the Eigenvalue Stability Bounded Margin Maximization (ESBMM) algorithm to automatically tune the multiple kernel parameters for Kernel-based LDA methods. To demonstrate its effectiveness, the ESBMM algorithm has been extended and applied on two existing kernelbased LDA methods. Experimental results show that after applying the ESBMM algorithm, the performance of these two methods are both improved. © 2008 IEEE. | - |
dc.format.extent | 7 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | IEEE | - |
dc.title | Kernel parameter optimization for kernel-based LDA methods | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/IJCNN.2008.4634350 | - |
dc.identifier.scopusid | 2-s2.0-56349111496 | - |
dc.identifier.wosid | 000263827202110 | - |
dc.identifier.bibliographicCitation | 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp 3840 - 3846 | - |
dc.citation.title | 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) | - |
dc.citation.startPage | 3840 | - |
dc.citation.endPage | 3846 | - |
dc.type.docType | Conference paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | sci | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Cybernetics | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.subject.keywordPlus | FACE-RECOGNITION | - |
dc.subject.keywordPlus | FISHER DISCRIMINANT | - |
dc.subject.keywordPlus | ALGORITHMS | - |
dc.subject.keywordPlus | POSE | - |
dc.subject.keywordAuthor | Face recognition | - |
dc.subject.keywordAuthor | Kernel fisher discriminant | - |
dc.subject.keywordAuthor | Kernel parameter | - |
dc.subject.keywordAuthor | Stability | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/4634350 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.