Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Deep learning-based natural language processing for detecting medical symptoms and histories in emergency patient triage

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Siryeol-
dc.contributor.authorLee,Juncheol-
dc.contributor.authorPark,Juntae-
dc.contributor.authorPark, Jiwoo-
dc.contributor.authorKim,Dohoon-
dc.contributor.authorLee,Joohyun-
dc.contributor.authorOh,Jaehoon-
dc.date.accessioned2024-01-20T09:03:41Z-
dc.date.available2024-01-20T09:03:41Z-
dc.date.issued2024-03-
dc.identifier.issn0735-6757-
dc.identifier.issn1532-8171-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/117888-
dc.description.abstractThe manual recording of electronic health records (EHRs) by clinicians in the emergency department (ED) is time-consuming and challenging. In light of recent advancements in large language models (LLMs) such as GPT and BERT, this study aimed to design and validate LLMs for automatic clinical diagnoses. The models were designed to identify 12 medical symptoms and 2 patient histories from simulated clinician–patient conversations within 6 primary symptom scenarios in emergency triage rooms.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherW. B. Saunders Co., Ltd.-
dc.titleDeep learning-based natural language processing for detecting medical symptoms and histories in emergency patient triage-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1016/j.ajem.2023.11.063-
dc.identifier.scopusid2-s2.0-85180481051-
dc.identifier.wosid001137546400001-
dc.identifier.bibliographicCitationAmerican Journal of Emergency Medicine, v.77, pp 29 - 38-
dc.citation.titleAmerican Journal of Emergency Medicine-
dc.citation.volume77-
dc.citation.startPage29-
dc.citation.endPage38-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEmergency Medicine-
dc.relation.journalWebOfScienceCategoryEmergency Medicine-
dc.subject.keywordAuthorNatural language processingElectronic health recordLarge language modelseXplainable artificial intelligenceTuring test-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0735675723006770?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Joo hyun photo

Lee, Joo hyun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE