Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Orthogonal learning particle swarm optimization

Full metadata record
DC Field Value Language
dc.contributor.authorZhan, Zhi-Hui-
dc.contributor.authorZhang, Jun-
dc.contributor.authorLiu, Ou-
dc.date.accessioned2024-01-22T13:36:15Z-
dc.date.available2024-01-22T13:36:15Z-
dc.date.issued2011-12-
dc.identifier.issn1089-778X-
dc.identifier.issn1941-0026-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/117921-
dc.description.abstractThis paper proposes an orthogonal learning particle swarm optimization (OLPSO) by designing an orthogonal learning (OL) strategy through the orthogonal experimental design (OED) method. The OL strategy takes the dimensions of the problem as the orthogonal experimental factors. The levels of each dimension (factor) are the two choices of the personal best position and the neighborhood's best position. By orthogonally combining the two learning exemplars, the useful information can be discovered, preserved and utilized to construct an efficient exemplar to guide the particle to fly in a more promising direction towards the global optimum. The effectiveness and efficiency of the OL strategy is demonstrated on a set of benchmark functions by comparing the PSOs with and without OL strategy. The OL strategy improves the PSO algorithm in terms of higher quality solution and faster convergence speed.-
dc.format.extent2-
dc.language영어-
dc.language.isoENG-
dc.publisherACM-
dc.titleOrthogonal learning particle swarm optimization-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1145/1569901.1570147-
dc.identifier.scopusid2-s2.0-72749104380-
dc.identifier.wosid000297586200006-
dc.identifier.bibliographicCitationGECCO '09: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, v.15, no.6, pp 1763 - 1764-
dc.citation.titleGECCO '09: Proceedings of the 11th Annual conference on Genetic and evolutionary computation-
dc.citation.volume15-
dc.citation.number6-
dc.citation.startPage1763-
dc.citation.endPage1764-
dc.type.docTypeConference paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.subject.keywordPlusSIMULATED ANNEALING ALGORITHM-
dc.subject.keywordPlusGENETIC ALGORITHM-
dc.subject.keywordPlusOPTIMA-
dc.subject.keywordAuthorGlobal numerical optimization-
dc.subject.keywordAuthorOrthogonal experimental design-
dc.subject.keywordAuthorOrthogonal learning particle swarm optimization-
dc.subject.keywordAuthorParticle swarm optimization-
dc.identifier.urlhttps://dl.acm.org/doi/10.1145/1569901.1570147-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE