Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Thin-Film Pinned-Photodiode Imager Pixel with Fully Monolithic Fabrication and beyond 1Me- Full Well Capacityopen access

Authors
Kim, Joo HyoungBerghmans, FrancoisSiddik, Abu BakarSutcu, IremMonroy, Isabel PintorYu, JehyeokWeydts, TristanGeorgitzikis, EpimitheasKang, JubinBaines, YannickHermans, YannickChandrasekaran, NareshDe Roose, FlorianUytterhoeven, GrietPuybaret, RenaudLi, YunlongLieberman, ItaiKarve, GauriCheyns, DavidGenoe, JanMalinowski, Paweł EHeremans, PaulMyny, KrisPapadopoulos, NikolasLee, Jiwon
Issue Date
Nov-2023
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Keywords
high dynamic range; large full well capacity; thin-film photodiode
Citation
Sensors, v.23, no.21, pp 1 - 13
Pages
13
Indexed
SCIE
SCOPUS
Journal Title
Sensors
Volume
23
Number
21
Start Page
1
End Page
13
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/117947
DOI
10.3390/s23218803
ISSN
1424-8220
1424-3210
Abstract
Thin-film photodiodes (TFPD) monolithically integrated on the Si Read-Out Integrated Circuitry (ROIC) are promising imaging platforms when beyond-silicon optoelectronic properties are required. Although TFPD device performance has improved significantly, the pixel development has been limited in terms of noise characteristics compared to the Si-based image sensors. Here, a thin-film-based pinned photodiode (TF-PPD) structure is presented, showing reduced kTC noise and dark current, accompanied with a high conversion gain (CG). Indium-gallium-zinc oxide (IGZO) thin-film transistors and quantum dot photodiodes are integrated sequentially on the Si ROIC in a fully monolithic scheme with the introduction of photogate (PG) to achieve PPD operation. This PG brings not only a low noise performance, but also a high full well capacity (FWC) coming from the large capacitance of its metal-oxide-semiconductor (MOS). Hence, the FWC of the pixel is boosted up to 1.37 Me- with a 5 μm pixel pitch, which is 8.3 times larger than the FWC that the TFPD junction capacitor can store. This large FWC, along with the inherent low noise characteristics of the TF-PPD, leads to the three-digit dynamic range (DR) of 100.2 dB. Unlike a Si-based PG pixel, dark current contribution from the depleted semiconductor interfaces is limited, thanks to the wide energy band gap of the IGZO channel material used in this work. We expect that this novel 4 T pixel architecture can accelerate the deployment of monolithic TFPD imaging technology, as it has worked for CMOS Image sensors (CIS).
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF PHOTONICS AND NANOELECTRONICS > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jiwon, Lee photo

Jiwon, Lee
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY (DEPARTMENT OF PHOTONICS AND NANOELECTRONICS)
Read more

Altmetrics

Total Views & Downloads

BROWSE