Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Thin, Highly Ionic Conductive, and Mechanically Robust Frame-Based Solid Electrolyte Membrane for All-Solid-State Li Batteries

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Dohwan-
dc.contributor.authorLee, Hyobin-
dc.contributor.authorRoh, Youngjoon-
dc.contributor.authorLee, Jongjun-
dc.contributor.authorSong, Jihun-
dc.contributor.authorDzakpasu, Cyril Bubu-
dc.contributor.authorKang, Seok Hun-
dc.contributor.authorChoi, Jaecheol-
dc.contributor.authorKim, Dong Hyeon-
dc.contributor.authorHah, Hoe Jin-
dc.contributor.authorCho, Kuk Young-
dc.contributor.authorLee, Young-Gi-
dc.contributor.authorLee, Yong Min-
dc.date.accessioned2024-01-22T17:03:08Z-
dc.date.available2024-01-22T17:03:08Z-
dc.date.issued2023-11-
dc.identifier.issn1614-6832-
dc.identifier.issn1614-6840-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/117957-
dc.description.abstractA thin but robust solid electrolyte layer is crucial for realizing the theoretical energy density of all-solid-state batteries (ASSBs) beyond state-of-the-art Li-ion batteries (LIBs). This study proposes a simple but practical strategy for fabricating thin solid electrolyte membranes using 5-mu m perforated polyethylene separators with 35% open areas as the supporting component, which ensures mechanical robustness for commercial-level cell assembly. The thickness of this frame-based solid electrolyte (f-SE) membrane can be reduced to approximate to 45 mu m, even after coating the Li6PS5Cl (LPSCl) solid electrolyte composite. Despite a slightly lower ionic conductivity compared to that of thick LPSCl pellets, the f-SE membranes show high conductance and low overpotential in Li||Li symmetric cells. Their incorporation into LiNi0.7Co0.15Mn0.15O2 full cells increases the reversible capacity and rate capability compared to those of cells with conventional LPSCl pellets. The f-SE membrane cells exhibit excellent cycling stability over 250 cycles, while maintaining high-capacity retention and Coulombic efficiency. Notably, the f-SE membranes significantly increase the energy density of ASSBs (314 Wh kg-1), exceeding the values reported for sulfide-based cells. These results highlight the crucial role of f-SE membranes in improving the mechanical properties and energy density of ASSBs, thereby contributing to the development of next-generation Li battery technologies. A strategy for design thin and robust solid electrolyte (SE) membranes is proposed by simply introducing a perforated polyethylene separator as supporting frame. The frame-based SE membranes exhibit excellent mechanical strength properties and high ionic conductance, result in high-capacity retention and stable cycling in NCM||Li cells with an extreme mono-cell-level energy density of 314 Wh kg-1.image-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisherWiley-VCH Verlag-
dc.titleThin, Highly Ionic Conductive, and Mechanically Robust Frame-Based Solid Electrolyte Membrane for All-Solid-State Li Batteries-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1002/aenm.202302596-
dc.identifier.scopusid2-s2.0-85176268168-
dc.identifier.wosid001100571400001-
dc.identifier.bibliographicCitationAdvanced Energy Materials, v.14, no.2, pp 1 - 11-
dc.citation.titleAdvanced Energy Materials-
dc.citation.volume14-
dc.citation.number2-
dc.citation.startPage1-
dc.citation.endPage11-
dc.type.docTypeArticle; Early Access-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusLITHIUM METAL ANODES-
dc.subject.keywordPlusHIGH-ENERGY DENSITY-
dc.subject.keywordPlusPOLYETHYLENE SEPARATORS-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusDENDRITE-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordAuthorall-solid-state batteries-
dc.subject.keywordAuthorsolid electrolyte membranes-
dc.subject.keywordAuthorsulfides-
dc.subject.keywordAuthorthin membranes-
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/10.1002/aenm.202302596-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher CHO, KUK YOUNG photo

CHO, KUK YOUNG
ERICA 공학대학 (ERICA 배터리소재화학공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE