A Binary Particle Swarm Optimizer With Priority Planning and Hierarchical Learning for Networked Epidemic Control
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhao, Tian-Fang | - |
dc.contributor.author | Chen, Wei-Neng | - |
dc.contributor.author | Liew, Alan Wee-Chung | - |
dc.contributor.author | Gu, Tianlong | - |
dc.contributor.author | Wu, Xiao-Kun | - |
dc.contributor.author | Zhang, Jun | - |
dc.date.accessioned | 2024-01-22T17:03:33Z | - |
dc.date.available | 2024-01-22T17:03:33Z | - |
dc.date.issued | 2021-08 | - |
dc.identifier.issn | 2168-2216 | - |
dc.identifier.issn | 2168-2232 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/117998 | - |
dc.description.abstract | The control of epidemics taking place in complex networks has been an increasingly active topic in public health management. In this article, we propose an efficient networked epidemic control system, where a modified susceptible-exposed-infected-vigilant (SEIV) model is first built to simulate epidemic spreading. Then, different from existing continuous resource models which abstractly map resources to parameters of epidemic models, a concrete resource description model is built to simulate real-world goods/services and their allocation. Based on the two models, a cost-constraint subset selection problem in epidemic control is identified. To solve the problem, a swarm-based stochastic optimization policy is proposed, where each particle in the swarm can determine its own solutions according to the guidance of its superior peers and historical searching experience of the whole swarm, without extra problem-relative information. Theoretical proof about system equilibrium is provided, which is consistent with experimental observations. The competitive performance of the proposed optimizer is validated by theoretical analysis and comparison experiments. Finally, an application case is provided to illustrate the practicability. | - |
dc.format.extent | 15 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | IEEE Advancing Technology for Humanity | - |
dc.title | A Binary Particle Swarm Optimizer With Priority Planning and Hierarchical Learning for Networked Epidemic Control | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/TSMC.2019.2945055 | - |
dc.identifier.scopusid | 2-s2.0-85110514550 | - |
dc.identifier.wosid | 000673624500043 | - |
dc.identifier.bibliographicCitation | IEEE Transactions on Systems, Man, and Cybernetics: Systems, v.51, no.8, pp 5090 - 5104 | - |
dc.citation.title | IEEE Transactions on Systems, Man, and Cybernetics: Systems | - |
dc.citation.volume | 51 | - |
dc.citation.number | 8 | - |
dc.citation.startPage | 5090 | - |
dc.citation.endPage | 5104 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Automation & Control Systems | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalWebOfScienceCategory | Automation & Control Systems | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Cybernetics | - |
dc.subject.keywordPlus | MODEL | - |
dc.subject.keywordPlus | DIFFUSION | - |
dc.subject.keywordPlus | AFRICA | - |
dc.subject.keywordPlus | SPREAD | - |
dc.subject.keywordPlus | IMPACT | - |
dc.subject.keywordPlus | COST | - |
dc.subject.keywordAuthor | Resource management | - |
dc.subject.keywordAuthor | Computational modeling | - |
dc.subject.keywordAuthor | Optimization | - |
dc.subject.keywordAuthor | Mathematical model | - |
dc.subject.keywordAuthor | Network topology | - |
dc.subject.keywordAuthor | Planning | - |
dc.subject.keywordAuthor | Deep learning | - |
dc.subject.keywordAuthor | Complex network | - |
dc.subject.keywordAuthor | epidemic control | - |
dc.subject.keywordAuthor | particle swarm optimization | - |
dc.subject.keywordAuthor | resource allocation | - |
dc.subject.keywordAuthor | spreading model | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/8887458 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.