Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Resource-Optimized Recursive Access Class Barring for Bursty Traffic in Cellular IoT Networks

Full metadata record
DC Field Value Language
dc.contributor.authorJang, Han Seung-
dc.contributor.authorJin, Hu-
dc.contributor.authorJung, Bang Chul-
dc.contributor.authorQuek, Tony Q. S.-
dc.date.accessioned2024-01-22T17:03:34Z-
dc.date.available2024-01-22T17:03:34Z-
dc.date.issued2021-07-
dc.identifier.issn2327-4662-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/117999-
dc.description.abstractA massive number of Internet-of-Things (IoT) and machine-to-machine (M2M) communication devices generate various types of data traffic in cellular IoT networks: periodic or nonperiodic, bursty or sporadic, etc. In particular, bursty and nonperiodic traffic may cause an unexpected network congestion and temporary lack of radio resources. In order to effectively accommodate such bursty and nonperiodic traffic, we propose a novel recursive access class barring (R-ACB) technique to optimally utilize the available resources associated with the random access procedure (RAP) that consists of multiple steps in cellular IoT networks, while existing ACB schemes only considered the resource of the first step of RAP, i.e., the number of available preambles. The proposed R-ACB technique consists of two main parts: 1) online estimation of the number of active IoT/M2M devices who have data to transmit to an eNodeB and 2) adjustment of the ACB factor that indicates the probability that an active device sends a preamble to eNodeB. It is notable that the estimation and the adjustment recursively affect each other when R-ACB operates. In addition, we also propose mathematical models to analyze the performance of R-ACB in terms of total service time, average access delay, resource efficiency, and energy efficiency (EE). Through extensive computer simulations, we show that the proposed R-ACB technique outperforms the conventional ACB schemes.-
dc.format.extent15-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleResource-Optimized Recursive Access Class Barring for Bursty Traffic in Cellular IoT Networks-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/JIOT.2021.3058808-
dc.identifier.scopusid2-s2.0-85100855958-
dc.identifier.wosid000670585100048-
dc.identifier.bibliographicCitationIEEE Internet of Things Journal, v.8, no.14, pp 11640 - 11654-
dc.citation.titleIEEE Internet of Things Journal-
dc.citation.volume8-
dc.citation.number14-
dc.citation.startPage11640-
dc.citation.endPage11654-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordPlusMACHINE-TO-MACHINE-
dc.subject.keywordPlusTAGGED PREAMBLES-
dc.subject.keywordPlusLTE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusINTERNET-
dc.subject.keywordPlusSCHEME-
dc.subject.keywordAuthorEstimation-
dc.subject.keywordAuthorDelays-
dc.subject.keywordAuthorUplink-
dc.subject.keywordAuthorMathematical model-
dc.subject.keywordAuthorInternet of Things-
dc.subject.keywordAuthorPerformance evaluation-
dc.subject.keywordAuthorMachine-to-machine communications-
dc.subject.keywordAuthorAccess class barring (ACB)-
dc.subject.keywordAuthorbacklog estimation-
dc.subject.keywordAuthorInternet of Things (IoT)-
dc.subject.keywordAuthormassive IoT-
dc.subject.keywordAuthorrandom access (RA)-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9352955-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher JIN, HU photo

JIN, HU
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE