Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Tailoring the mechanical stiffness of DNA nanostructures using engineered defects

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Chanseok-
dc.contributor.authorKim, Kyung Soo-
dc.contributor.authorKim, Young-Joo-
dc.contributor.authorLee, Jae Young-
dc.contributor.authorKim, Do-Nyun-
dc.date.accessioned2024-03-27T02:30:26Z-
dc.date.available2024-03-27T02:30:26Z-
dc.date.issued2019-07-
dc.identifier.issn1936-0851-
dc.identifier.issn1936-086X-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/118187-
dc.description.abstractAs scaffolded DNA origami enables the construction of diverse DNA nanostructures with predefined shapes, precise modulation of their mechanical stiffness remains challenging. We demonstrate a modular design method to widely and precisely control the mechanical flexibility of scaffolded DNA origami nanostructures while maintaining their overall structural integrity and geometric characteristics. Individually engineered defects that are short single-stranded DNA (ssDNA) gaps could reduce up to 70% of the bending stiffness of DNA origami constructs with different cross-sectional shapes. We further developed a computational analysis platform predicting the bending stiffness of a defect-engineered DNA nanostructure quickly during the design process, to offer an efficient way of designing various DNA constructs with required mechanical stiffness in a desired shape for a targeted function. © Copyright 2019 American Chemical Society.-
dc.format.extent-992-
dc.language영어-
dc.language.isoENG-
dc.publisherAmerican Chemical Society-
dc.titleTailoring the mechanical stiffness of DNA nanostructures using engineered defects-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1021/acsnano.9b03770-
dc.identifier.scopusid2-s2.0-85070485283-
dc.identifier.wosid000477786400098-
dc.identifier.bibliographicCitationACS Nano, v.13, no.7, pp 8329 - 7336-
dc.citation.titleACS Nano-
dc.citation.volume13-
dc.citation.number7-
dc.citation.startPage8329-
dc.citation.endPage7336-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusORIGAMI-
dc.subject.keywordPlusFLEXIBILITY-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusSHAPES-
dc.subject.keywordAuthorDNA nanotechnology-
dc.subject.keywordAuthorFinite element analysis-
dc.subject.keywordAuthorMolecular dynamics simulation-
dc.subject.keywordAuthorPersistence length-
dc.subject.keywordAuthorScaffolded DNA origami-
dc.subject.keywordAuthorSingle-stranded DNA gap-
dc.subject.keywordAuthorStructural stiffness-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acsnano.9b03770-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF BIONANO ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chanseok, Lee photo

Chanseok, Lee
ERICA 공학대학 (DEPARTMENT OF BIONANO ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE