Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Highly reliable and large-scale simulations of promising argyrodite solid-state electrolytes using a machine-learned moment tensor potential

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Ji Hoon-
dc.contributor.authorJun, Byeongsun-
dc.contributor.authorJang, Yong Jun-
dc.contributor.authorChoi, Sun Ho-
dc.contributor.authorChoi, Seong Hyeon-
dc.contributor.authorCho, Sung Man-
dc.contributor.authorKim, Yong-Gu-
dc.contributor.authorKim, Byung-Hyun-
dc.contributor.authorLee, Sang Uck-
dc.date.accessioned2024-03-29T07:00:38Z-
dc.date.available2024-03-29T07:00:38Z-
dc.date.issued2024-06-
dc.identifier.issn2211-2855-
dc.identifier.issn2211-3282-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/118265-
dc.description.abstractThe high ionic conductivity of argyrodite makes it an attractive candidate for solid-state electrolytes (SSEs) in all-solid-state Li-ion batteries (ASSBs). Although great effort has been devoted to using ab initio molecular dynamics (AIMD) to evaluate ionic conductivity and elucidate the Li-ion diffusion mechanism of argyrodite-based SSEs, limitations in system size, simulation temperatures, and time associated with AIMD make accurate predictions and analysis of Li-ion diffusion challenging. Here, we present a reliable, large-scale computational approach to realistic simulation of SSEs in the bulk and at the grain boundary (GB) based on moment tensor potentials (MTPs) trained at the van der Waals optB88 level of theory. MTPs enable sufficiently large-scale and long-time simulations that reflect all possible configurational disorder of experimental crystal structures and provide accurate ionic conductivities that are close to values measured experimentally in halogenated Li-argyrodite (Li6PS5X [X = Cl, Br, I]). Our simulations show that the vibrational motion of a PS4 polyhedron has a positive effect on ionic conductivity. We also developed an accurate MTP using an active-learning approach to exploring Li-ion diffusion at the GB in polycrystalline SSEs. Simulations of the molecular dynamics of large ∑5100021 (>10,000-atom) GB models reveal that Li-ion accumulation around the GB region retards ionic conductivity and extends into an interior region approximately 20 Å from the GB interface. This work provides a practical approach to realistic large-scale and interfacial GB simulations that are otherwise inaccessible through ab initio calculations by developing accurate machine-learned MTPs. © 2024 Elsevier Ltd-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier Ltd-
dc.titleHighly reliable and large-scale simulations of promising argyrodite solid-state electrolytes using a machine-learned moment tensor potential-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.nanoen.2024.109436-
dc.identifier.scopusid2-s2.0-85187225481-
dc.identifier.wosid001218852800001-
dc.identifier.bibliographicCitationNano Energy, v.124, pp 1 - 10-
dc.citation.titleNano Energy-
dc.citation.volume124-
dc.citation.startPage1-
dc.citation.endPage10-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusLITHIUM-ION CONDUCTION-
dc.subject.keywordPlusINITIO MOLECULAR-DYNAMICS-
dc.subject.keywordPlusTOTAL-ENERGY CALCULATIONS-
dc.subject.keywordPlusGRAIN-BOUNDARY-
dc.subject.keywordPlusSUBSTITUTION-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusLI6PS5X-
dc.subject.keywordAuthorArgyrodite-
dc.subject.keywordAuthorGrain boundary-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorMoment tensor potential-
dc.subject.keywordAuthorSimulation-
dc.subject.keywordAuthorSolid-state electrolyte-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S2211285524001848?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Byung-Hyun photo

Kim, Byung-Hyun
ERICA 공학대학 (ERICA 에너지바이오학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE