24시간 급전 계획 모델에서 딥러닝을 활용한 에너지저장장치 운용 방법
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 위성규 | - |
dc.contributor.author | 김동우 | - |
dc.date.accessioned | 2024-04-04T03:00:30Z | - |
dc.date.available | 2024-04-04T03:00:30Z | - |
dc.date.issued | 2023-11 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/118439 | - |
dc.description.abstract | 본 논문은 발전 부분의 NDC 2030 목표를 달성하기 위해 고안된 24시간 급전 계획 모델에서 24시의 에너지 저장 장치(ESS, Energy Storage System) 문제를 완화하기 위해 딥러닝을 활용하여 ESS 운용 방법을 결정하였고, 이를 활용해서 24시간 단위 급전 계획에서 제공하는 전력 수요, 신재생 발전량의 학습 시간에 따라 총 4-12억의 비용 감축을 유도해 낼 수 있었다. | - |
dc.format.extent | 2 | - |
dc.language | 한국어 | - |
dc.language.iso | KOR | - |
dc.publisher | 한국통신학회 | - |
dc.title | 24시간 급전 계획 모델에서 딥러닝을 활용한 에너지저장장치 운용 방법 | - |
dc.title.alternative | An Operational Strategy of Energy Storage System in a 24-hour Unit Commitment Model Using Deep Learning | - |
dc.type | Article | - |
dc.publisher.location | 대한민국 | - |
dc.identifier.bibliographicCitation | 2023년도 한국통신학회 추계종합학술발표회, pp 1111 - 1112 | - |
dc.citation.title | 2023년도 한국통신학회 추계종합학술발표회 | - |
dc.citation.startPage | 1111 | - |
dc.citation.endPage | 1112 | - |
dc.type.docType | Proceeding | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | other | - |
dc.identifier.url | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11667729 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.