딥러닝을 이용한 DEMON 그램 주파수선 추출 기법 연구
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 신원식 | - |
dc.contributor.author | 권혁종 | - |
dc.contributor.author | 설호석 | - |
dc.contributor.author | 신원 | - |
dc.contributor.author | 고현석 | - |
dc.contributor.author | 송택렬 | - |
dc.contributor.author | 김다솔 | - |
dc.contributor.author | 최강훈 | - |
dc.contributor.author | 최지웅 | - |
dc.date.accessioned | 2024-04-08T00:00:18Z | - |
dc.date.available | 2024-04-08T00:00:18Z | - |
dc.date.issued | 2024-01 | - |
dc.identifier.issn | 1225-4428 | - |
dc.identifier.issn | 2287-3775 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/118463 | - |
dc.description.abstract | 수중 소음 측정이 가능한 수동 소나에 수신된 선박 방사소음은 Detection of Envelope Modulation on Noise(DEMON) 분석으로 얻은 선박 정보를 사용하여 선박 식별과 분류가 가능하다. 하지만 낮은 신호대잡음비(Signal-to-Noise Ratio, SNR) 환경에서는 DEMON 그램 내 선박 정보가 담겨있는 표적 주파수선을 분석 및 파악하는데 어려움이 발생한다. 본 논문에서는 낮은 SNR 환경에서 보다 정확한 표적 식별을 위해 딥러닝 기법 중 의미론적 분할을 사용하여 표적 주파수선들을 추출하는 연구를 수행하였다. SNR과 기본 주파수를 변경시키며 생성한 모의 DEMON 그램 데이터를 사용하여 의미론적 분할 모델인 U-Net, UNet++, DeepLabv3+를 학습 후 평가하였고, 학습된 모델들을 이용하여 캐나다 조지아 해협에서 측정한 선박 방사소음 데이터셋인 DeepShip으로 제작한 DEMON 그램 예측 성능을 비교하였다. 모의 DEMON 그램으로 학습된 모델을 평가한 결과 U-Net이 성능이 가장 높았으며, DeepShip으로 만든 DEMON 그램의 표적 주파수선을 어느 정도 추출할 수 있는 것을 확인하였다. | - |
dc.description.abstract | Ship-radiated noise received by passive sonar that can measure underwater noise can be identified and classified ship using Detection of Envelope Modulation on Noise (DEMON) analysis. However, in a low Signal-to-Noise Ratio (SNR) environment, it is difficult to analyze and identify the target frequency line containing ship information in the DEMONgram. In this paper, we conducted a study to extract target frequency lines using semantic segmentation among deep learning techniques for more accurate target identification in a low SNR environment. The semantic segmentation models U-Net, UNet++, and DeepLabv3+ were trained and evaluated using simulated DEMONgram data generated by changing SNR and fundamental frequency, and the DEMONgram prediction performance of DeepShip, a dataset of ship-radiated noise recordings on the strait of Georgia in Canada, was compared using the trained models. As a result of evaluating the trained model with the simulated DEMONgram, it was confirmed that U-Net had the highest performance and that it was possible to extract the target frequency line of the DEMONgram made by DeepShip to some extent. | - |
dc.format.extent | 11 | - |
dc.language | 한국어 | - |
dc.language.iso | KOR | - |
dc.publisher | 한국음향학회 | - |
dc.title | 딥러닝을 이용한 DEMON 그램 주파수선 추출 기법 연구 | - |
dc.title.alternative | A study on DEMONgram frequency line extraction method using deep learning | - |
dc.type | Article | - |
dc.publisher.location | 대한민국 | - |
dc.identifier.doi | 10.7776/ASK.2024.43.1.078 | - |
dc.identifier.wosid | 001178142600016 | - |
dc.identifier.bibliographicCitation | the Journal of the Acoustical Society of Korea, v.43, no.1, pp 78 - 88 | - |
dc.citation.title | the Journal of the Acoustical Society of Korea | - |
dc.citation.volume | 43 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 78 | - |
dc.citation.endPage | 88 | - |
dc.type.docType | Article | - |
dc.identifier.kciid | ART003049085 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | esci | - |
dc.description.journalRegisteredClass | kci | - |
dc.relation.journalResearchArea | Acoustics | - |
dc.relation.journalWebOfScienceCategory | Acoustics | - |
dc.subject.keywordAuthor | Deep learning | - |
dc.subject.keywordAuthor | Semantic segmentation | - |
dc.subject.keywordAuthor | Detection of Envelope Modulation on Noise (DEMON) | - |
dc.subject.keywordAuthor | DEMONgram | - |
dc.subject.keywordAuthor | Frequency line extraction | - |
dc.subject.keywordAuthor | 딥러닝 | - |
dc.subject.keywordAuthor | 의미론적 분할 | - |
dc.subject.keywordAuthor | Detection of Envelope Modulation on Noise (DEMON) | - |
dc.subject.keywordAuthor | DEMON 그램 | - |
dc.subject.keywordAuthor | 주파수선 추출 | - |
dc.identifier.url | https://www.jask.or.kr/articles/article/zvm8/ | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.