Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A New Immersed Finite Element Method for Two-Phase Stokes Problems Having Discontinuous Pressure

Full metadata record
DC Field Value Language
dc.contributor.authorJo, Gwanghyun-
dc.contributor.authorKwak, Do Young-
dc.date.accessioned2024-04-09T03:00:53Z-
dc.date.available2024-04-09T03:00:53Z-
dc.date.issued2024-01-
dc.identifier.issn1609-4840-
dc.identifier.issn1609-9389-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/118490-
dc.description.abstractIn this paper, we develop a new immersed finite element method (IFEM) for two-phase incompressible Stokes flows. We allow the interface to cut the finite elements. On the noninterface element, the standard Crouzeix-Raviart element and the P 0 {P_{0}} element pair is used. On the interface element, the basis functions developed for scalar interface problems (Kwak et al., An analysis of a broken P 1 {P_{1}} -nonconforming finite element method for interface problems, SIAM J. Numer. Anal. (2010)) are modified in such a way that the coupling between the velocity and pressure variable is different. There are two kinds of basis functions. The first kind of basis satisfies the Laplace-Young condition under the assumption of the continuity of the pressure variable. In the second kind, the velocity is of bubble type and is coupled with the discontinuous pressure, still satisfying the Laplace-Young condition. We remark that in the second kind the pressure variable has two degrees of freedom on each interface element. Therefore, our methods can handle the discontinuous pressure case. Numerical results including the case of the discontinuous pressure variable are provided. We see optimal convergence orders for all examples.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherWalter de Gruyter GmbH-
dc.titleA New Immersed Finite Element Method for Two-Phase Stokes Problems Having Discontinuous Pressure-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1515/cmam-2022-0122-
dc.identifier.scopusid2-s2.0-85158147216-
dc.identifier.wosid000979474400001-
dc.identifier.bibliographicCitationComputational Methods in Applied Mathematics, v.24, no.1, pp 49 - 58-
dc.citation.titleComputational Methods in Applied Mathematics-
dc.citation.volume24-
dc.citation.number1-
dc.citation.startPage49-
dc.citation.endPage58-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordPlusCRACK-GROWTH-
dc.subject.keywordPlusSPACE-
dc.subject.keywordPlusELASTICITY-
dc.subject.keywordAuthorCrouzeix–Raviart Finite Element-
dc.subject.keywordAuthorImmersed Finite Element Method-
dc.subject.keywordAuthorLaplace–Young Condition-
dc.subject.keywordAuthorTwo-Phase Stokes Problems-
dc.identifier.urlhttps://www.degruyter.com/document/doi/10.1515/cmam-2022-0122/html-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > ERICA 수리데이터사이언스학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jo, Gwanghyun photo

Jo, Gwanghyun
ERICA 소프트웨어융합대학 (ERICA 수리데이터사이언스학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE