Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

The Next Generation COVID-19 Antiviral; Niclosamide-Based Inorganic Nanohybrid System Kills SARS-CoV-2

Authors
Choi, GoeunRejinold, N. SanojPiao, HuiyanRyu, Young BaeKwon, Hyung-JunLee, In ChulSeo, Jeong InYoo, Hye HyunJin, Geun-wooChoy, Jin-Ho
Issue Date
Aug-2023
Publisher
Wiley - V C H Verlag GmbbH & Co.
Keywords
antiviral agents; clinical studies; emerging nanomedicine; enhanced efficacy; niclosamide
Citation
Small, v.20, no.39, pp 1 - 14
Pages
14
Indexed
SCIE
SCOPUS
Journal Title
Small
Volume
20
Number
39
Start Page
1
End Page
14
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/118604
DOI
10.1002/smll.202305148
ISSN
1613-6810
1613-6829
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is a serious global threat with surging new variants of concern. Although global vaccinations have slowed the pandemic, their longevity is still unknown. Therefore, new orally administrable antiviral agents are highly demanded. Among various repurposed drugs, niclosamide (NIC) is the most potential one for various viral diseases such as COVID-19, SARS (severe acute respiratory syndrome), MERS (middle east respiratory syndrome), influenza, RSV (respiratory syncytial virus), etc. Since NIC cannot be effectively absorbed, a required plasma concentration for antiviral potency is hard to maintain, thereby restricting its entry into the infected cells. Such a 60-year-old bioavailability challenging issue has been overcome by engineering with MgO and hydroxypropyl methylcellulose (HPMC), forming hydrophilic NIC-MgO-HPMC, with improved intestinal permeability without altering NIC metabolism as confirmed by parallel artificial membrane permeability assay. The inhibitory effect on SARS-CoV-2 replication is confirmed in the Syrian hamster model to reduce lung injury. Clinical studies reveal that the bioavailability of NIC hybrid drug can go 4 times higher than the intact NIC. The phase II clinical trial shows a dose-dependent bioavailability of NIC from hybrid drug suggesting its potential applicability as a game changer in achieving the much-anticipated endemic phase.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF PHARMACY > DEPARTMENT OF PHARMACY > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoo, Hye Hyun photo

Yoo, Hye Hyun
COLLEGE OF PHARMACY (DEPARTMENT OF PHARMACY)
Read more

Altmetrics

Total Views & Downloads

BROWSE