Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Adaptive Filter Design Using Type-2 Fuzzy Cerebellar Model Articulation Controller

Full metadata record
DC Field Value Language
dc.contributor.authorLin, Chih-Min-
dc.contributor.authorYang, Ming-Shu-
dc.contributor.authorChao, Fei-
dc.contributor.authorHu, Xiao-Min-
dc.contributor.authorZhang, Jun-
dc.date.accessioned2024-04-09T03:03:01Z-
dc.date.available2024-04-09T03:03:01Z-
dc.date.issued2016-10-
dc.identifier.issn2162-237X-
dc.identifier.issn2162-2388-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/118611-
dc.description.abstractThis paper aims to propose an efficient network and applies it as an adaptive filter for the signal processing problems. An adaptive filter is proposed using a novel interval type-2 fuzzy cerebellar model articulation controller (T2FCMAC). The T2FCMAC realizes an interval type-2 fuzzy logic system based on the structure of the CMAC. Due to the better ability of handling uncertainties, type-2 fuzzy sets can solve some complicated problems with outstanding effectiveness than type-1 fuzzy sets. In addition, the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so that the convergence of the filtering error can be guaranteed. In order to demonstrate the performance of the proposed adaptive T2FCMAC filter, it is tested in signal processing applications, including a nonlinear channel equalization system, a time-varying channel equalization system, and an adaptive noise cancellation system. The advantages of the proposed filter over the other adaptive filters are verified through simulations.-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE Computational Intelligence Society-
dc.titleAdaptive Filter Design Using Type-2 Fuzzy Cerebellar Model Articulation Controller-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TNNLS.2015.2491305-
dc.identifier.scopusid2-s2.0-84946029742-
dc.identifier.wosid000384644000008-
dc.identifier.bibliographicCitationIEEE Transactions on Neural Networks and Learning Systems, v.27, no.10, pp 2084 - 2094-
dc.citation.titleIEEE Transactions on Neural Networks and Learning Systems-
dc.citation.volume27-
dc.citation.number10-
dc.citation.startPage2084-
dc.citation.endPage2094-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Hardware & Architecture-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusCMAC-
dc.subject.keywordPlusIDENTIFICATION-
dc.subject.keywordPlusEQUALIZATION-
dc.subject.keywordPlusCANCELLATION-
dc.subject.keywordAuthorAdaptive filter-
dc.subject.keywordAuthorcerebellar model articulation controller (CMAC)-
dc.subject.keywordAuthorchannel equalization system-
dc.subject.keywordAuthorinterval type-2 fuzzy system-
dc.subject.keywordAuthornoise cancellation system-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/7312475-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE