Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Primary Theoretical Study on Decomposition-Based Multiobjective Evolutionary Algorithms

Full metadata record
DC Field Value Language
dc.contributor.authorLi, Yuan-Long-
dc.contributor.authorZhou, Yu-Ren-
dc.contributor.authorZhan, Zhi-Hui-
dc.contributor.authorZhang, Jun-
dc.date.accessioned2024-04-09T03:03:04Z-
dc.date.available2024-04-09T03:03:04Z-
dc.date.issued2016-08-
dc.identifier.issn1089-778X-
dc.identifier.issn1941-0026-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/118615-
dc.description.abstractDecomposition-based multiobjective evolutionary algorithms (MOEAs) have been studied a lot and have been widely and successfully used in practice. However, there are no related theoretical studies on this kind of MOEAs. In this paper, we theoretically analyze the MOEAs based on decomposition. First, we analyze the runtime complexity with two basic simple instances. In both cases the Pareto front have one-to-one map to the decomposed subproblems or not. Second, we analyze the runtime complexity on two difficult instances with bad neighborhood relations in fitness space or decision space. Our studies show that: 1) in certain cases, polynomialsized evenly distributed weight parameters-based decomposition cannot map each point in a polynomial sized Pareto front to a subproblem; 2) an ideal serialized algorithm can be very efficient on some simple instances; 3) the standard MOEA based on decomposition can benefit a runtime cut of a constant fraction from its neighborhood coevolution scheme; and 4) the standard MOEA based on decomposition performs well on difficult instances because both the Pareto domination-based and the scalar subproblem-based search schemes are combined in a proper way.-
dc.format.extent14-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.titleA Primary Theoretical Study on Decomposition-Based Multiobjective Evolutionary Algorithms-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TEVC.2015.2501315-
dc.identifier.scopusid2-s2.0-84982864575-
dc.identifier.wosid000381438700006-
dc.identifier.bibliographicCitationIEEE Transactions on Evolutionary Computation, v.20, no.4, pp 563 - 576-
dc.citation.titleIEEE Transactions on Evolutionary Computation-
dc.citation.volume20-
dc.citation.number4-
dc.citation.startPage563-
dc.citation.endPage576-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.subject.keywordPlusMANY-OBJECTIVE OPTIMIZATION-
dc.subject.keywordPlusNONDOMINATED SORTING APPROACH-
dc.subject.keywordPlusPARTICLE SWARM OPTIMIZATION-
dc.subject.keywordPlusPSEUDO-BOOLEAN FUNCTIONS-
dc.subject.keywordPlusDRIFT ANALYSIS-
dc.subject.keywordPlusRUNTIME ANALYSIS-
dc.subject.keywordPlusRUNNING TIME-
dc.subject.keywordPlusLOWER BOUNDS-
dc.subject.keywordPlusCONVERGENCE-
dc.subject.keywordPlusCONSTRAINTS-
dc.subject.keywordAuthorDecomposition-based multiobjective evolutionary algorithms (MOEAs)-
dc.subject.keywordAuthorruntime analysis-
dc.subject.keywordAuthortheoretical study-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/7329972-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE