Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Hybrid Evolutionary Immune Algorithm for Multiobjective Optimization Problems

Full metadata record
DC Field Value Language
dc.contributor.authorLin, Qiuzhen-
dc.contributor.authorChen, Jianyong-
dc.contributor.authorZhan, Zhi-Hui-
dc.contributor.authorChen, Wei-Neng-
dc.contributor.authorCoello Coello, Carlos A.-
dc.contributor.authorYin, Yilong-
dc.contributor.authorLin, Chih-Min-
dc.contributor.authorZhang, Jun-
dc.date.accessioned2024-04-09T03:03:07Z-
dc.date.available2024-04-09T03:03:07Z-
dc.date.issued2016-10-
dc.identifier.issn1089-778X-
dc.identifier.issn1941-0026-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/118619-
dc.description.abstractIn recent years, multiobjective immune algorithms (MOIAs) have shown promising performance in solving multiobjective optimization problems (MOPs). However, basic MOIAs only use a single hypermutation operation to evolve individuals, which may induce some difficulties in tackling complicated MOPs. In this paper, we propose a novel hybrid evolutionary framework for MOIAs, in which the cloned individuals are divided into several subpopulations and then evolved using different evolutionary strategies. An example of this hybrid framework is implemented, in which simulated binary crossover and differential evolution with polynomial mutation are adopted. A fine-grained selection mechanism and a novel elitism sharing strategy are also adopted for performance enhancement. Various comparative experiments are conducted on 28 test MOPs and our empirical results validate the effectiveness and competitiveness of our proposed algorithm in solving MOPs of different types.-
dc.format.extent19-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.titleA Hybrid Evolutionary Immune Algorithm for Multiobjective Optimization Problems-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TEVC.2015.2512930-
dc.identifier.scopusid2-s2.0-84990985826-
dc.identifier.wosid000385241600009-
dc.identifier.bibliographicCitationIEEE Transactions on Evolutionary Computation, v.20, no.5, pp 711 - 729-
dc.citation.titleIEEE Transactions on Evolutionary Computation-
dc.citation.volume20-
dc.citation.number5-
dc.citation.startPage711-
dc.citation.endPage729-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.subject.keywordPlusMANY-OBJECTIVE OPTIMIZATION-
dc.subject.keywordPlusCLONAL SELECTION-
dc.subject.keywordPlusDIVERSITY-
dc.subject.keywordPlusNETWORK-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordAuthorArtificial immune system-
dc.subject.keywordAuthorelitism strategy-
dc.subject.keywordAuthorhybrid evolution-
dc.subject.keywordAuthormultiobjective optimization problems (MOPs)-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/7368156-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE