Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Genetic Learning Particle Swarm Optimization

Full metadata record
DC Field Value Language
dc.contributor.authorGong, Yue-Jiao-
dc.contributor.authorLi, Jing-Jing-
dc.contributor.authorZhou, Yicong-
dc.contributor.authorLi, Yun-
dc.contributor.authorChung, Henry Shu-Hung-
dc.contributor.authorShi, Yu-Hui-
dc.contributor.authorZhang, Jun-
dc.date.accessioned2024-04-09T03:03:08Z-
dc.date.available2024-04-09T03:03:08Z-
dc.date.issued2016-10-
dc.identifier.issn2168-2267-
dc.identifier.issn2168-2275-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/118620-
dc.description.abstractSocial learning in particle swarm optimization (PSO) helps collective efficiency, whereas individual reproduction in genetic algorithm (GA) facilitates global effectiveness. This observation recently leads to hybridizing PSO with GA for performance enhancement. However, existing work uses a mechanistic parallel superposition and research has shown that construction of superior exemplars in PSO is more effective. Hence, this paper first develops a new framework so as to organically hybridize PSO with another optimization technique for "learning." This leads to a generalized "learning PSO" paradigm, the *L-PSO. The paradigm is composed of two cascading layers, the first for exemplar generation and the second for particle updates as per a normal PSO algorithm. Using genetic evolution to breed promising exemplars for PSO, a specific novel *L-PSO algorithm is proposed in the paper, termed genetic learning PSO (GL-PSO). In particular, genetic operators are used to generate exemplars from which particles learn and, in turn, historical search information of particles provides guidance to the evolution of the exemplars. By performing crossover, mutation, and selection on the historical information of particles, the constructed exemplars are not only well diversified, but also high qualified. Under such guidance, the global search ability and search efficiency of PSO are both enhanced. The proposed GL-PSO is tested on 42 benchmark functions widely adopted in the literature. Experimental results verify the effectiveness, efficiency, robustness, and scalability of the GL-PSO.-
dc.format.extent14-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE Advancing Technology for Humanity-
dc.titleGenetic Learning Particle Swarm Optimization-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TCYB.2015.2475174-
dc.identifier.scopusid2-s2.0-84941894209-
dc.identifier.wosid000384265600007-
dc.identifier.bibliographicCitationIEEE Transactions on Cybernetics, v.46, no.10, pp 2277 - 2290-
dc.citation.titleIEEE Transactions on Cybernetics-
dc.citation.volume46-
dc.citation.number10-
dc.citation.startPage2277-
dc.citation.endPage2290-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Cybernetics-
dc.subject.keywordPlusDIFFERENTIAL EVOLUTION-
dc.subject.keywordPlusALGORITHM-
dc.subject.keywordPlusORGANISMS-
dc.subject.keywordPlusVARIANTS-
dc.subject.keywordAuthorExemplar construction-
dc.subject.keywordAuthorgenetic algorithm (GA)-
dc.subject.keywordAuthorhybrid method-
dc.subject.keywordAuthorlearning scheme-
dc.subject.keywordAuthorparticle swarm optimization (PSO)-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/7271066-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE