Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Understanding the microstructural evolution and fatigue behavior of aluminum 2319 fabricated by wire arc additive manufacturing

Authors
Kannan, A. RajeshPramod, R.Prakash, K. SanjeeviShanmugam, N. SivaYoon, JonghunOliveira, J. P.
Issue Date
Apr-2024
Publisher
Elsevier Urban/Partners Sp. z.o.o.
Keywords
WAAM; Aluminum alloy; ER2319; Microstructure; Mechanical properties; Fatigue
Citation
Archives of Civil and Mechanical Engineering, v.24, no.2, pp 1 - 16
Pages
16
Indexed
SCIE
SCOPUS
Journal Title
Archives of Civil and Mechanical Engineering
Volume
24
Number
2
Start Page
1
End Page
16
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/118858
DOI
10.1007/s43452-024-00925-6
ISSN
1644-9665
2083-3318
Abstract
Aluminum alloys have received substantial interest for the fabrication of complex and large size components for the aerospace industry via additive manufacturing processes. This work explores the fatigue performance of aluminum alloy 2319 fabricated by wire-based Directed Energy Deposition (DED) with Cold Metal Transfer (CMT) process, i.e., wire arc additive manufacturing (WAAM) technology. The as-deposited 2319 wall microstructure was composed by both columnar dendrites and equiaxed grains along the build direction (BD). Also, fine and coarse theta and theta ' precipitates were noticed in the WAAM printed 2319 wall due to repeated thermal cycles while fine precipitates were observed in wrought alloy. The microhardness measurements revealed a gradual decrease from the bottom to the top layers and varied between 65 and 86 HV. Tensile properties (yield strength, ultimate tensile strength, and elongation) measured in the horizontal and vertical directions were 99 +/- 4 MPa, 268 +/- 11 MPa 14.8 +/- 1.5% and 96 +/- 3 MPa, 257 +/- 9 MPa, and 15.6 +/- 2%, respectively. The WAAM 2319 fabricated in this work retained 72% of the strength of their AA2219-T62 wrought counterparts, which can be attributed to the large columnar grains that developed during the additive manufacturing process. The fatigue strength of WAAM 2319 specimen was 67 MPa, corresponding to 65% of the fatigue strength of AA2219-T62. Fracture surface analysis revealed the presence of small and large dimples, secondary micro-cracks, broken intermetallics, and inclusions. This work will provide novel insights and guidance for manufacturing near-net shape aluminum alloys by wire-based DED with improved tensile and fatigue properties.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MECHANICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoon, Jong hun photo

Yoon, Jong hun
ERICA 공학대학 (DEPARTMENT OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE