Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Deep Learning-Based Defect Detection Framework for Ultra High Resolution Images of Tunnels

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Kisu-
dc.contributor.authorLee, Sanghyo-
dc.contributor.authorKim, Ha Young-
dc.date.accessioned2024-05-02T02:30:27Z-
dc.date.available2024-05-02T02:30:27Z-
dc.date.issued2023-01-
dc.identifier.issn2071-1050-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/118935-
dc.description.abstractThis study proposes a defect detection framework to improve the performance of deep learning-based detection models for ultra-high resolution (UHR) images generated by tunnel inspection systems. Most of the scanning technologies used in tunnel inspection systems generate UHR images. Defects in real-world images, on the other hand, are noticeably smaller than the image. These characteristics make simple preprocessing applications, such as downscaling, difficult due to information loss. Additionally, when a deep learning model is trained by the UHR images under the limited computational resource for training, problems may occur, including a reduction in object detection rate, unstable training, etc. To address these problems, we propose a framework that includes preprocessing and postprocessing of UHR images related to image patches rather than focusing on deep learning models. Furthermore, it includes a method for supplementing problems according to the format of the data annotation in the preprocessing process. When the proposed framework was applied to the UHR images of a tunnel, the performance of the deep learning-based defect detection model was improved by approximately 77.19 percentage points (pp). Because the proposed framework is for general UHR images, it can effectively recognize damage to general structures other than tunnels. Thus, it is necessary to verify the applicability of the defect detection framework under various conditions in future works. © 2023 by the authors.-
dc.format.extent15-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI Open Access Publishing-
dc.titleDeep Learning-Based Defect Detection Framework for Ultra High Resolution Images of Tunnels-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/su15021292-
dc.identifier.scopusid2-s2.0-85163926253-
dc.identifier.wosid000916104800001-
dc.identifier.bibliographicCitationSustainability, v.15, no.2, pp 1 - 15-
dc.citation.titleSustainability-
dc.citation.volume15-
dc.citation.number2-
dc.citation.startPage1-
dc.citation.endPage15-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassssci-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.relation.journalWebOfScienceCategoryGreen & Sustainable Science & Technology-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalWebOfScienceCategoryEnvironmental Studies-
dc.subject.keywordPlusOBJECT DETECTIONIN-
dc.subject.keywordPlusSPECTION-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthordefect detection-
dc.subject.keywordAuthorpostprocessing-
dc.subject.keywordAuthorpreprocessing-
dc.subject.keywordAuthortunnel inspection system-
dc.subject.keywordAuthorultra-high resolution-
dc.identifier.urlhttps://www.mdpi.com/2071-1050/15/2/1292-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > MAJOR IN BUILDING INFORMATION TECHNOLOGY > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher LEE, SANG HYO photo

LEE, SANG HYO
ERICA 공학대학 (MAJOR IN BUILDING INFORMATION TECHNOLOGY)
Read more

Altmetrics

Total Views & Downloads

BROWSE