Proxy-basedWeb Prefetching Exploiting Long Short-Term Memory
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Won, Jiwoong | - |
dc.contributor.author | Zou, Wenbo | - |
dc.contributor.author | Ahn, Jemin | - |
dc.contributor.author | Lim, Jiseoup | - |
dc.contributor.author | Kim, Gun-Woo | - |
dc.contributor.author | Kang, Kyungtae | - |
dc.date.accessioned | 2024-05-02T03:00:29Z | - |
dc.date.available | 2024-05-02T03:00:29Z | - |
dc.date.issued | 2023-03 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/118941 | - |
dc.description.abstract | We propose an intention-related long short-term memory (Ir-LSTM) model based on deep learning to realize web prediction. This model draws on an LSTM model and skip-gram embedding method, and we expand the input features with user information. To maximize its potential, we propose a real-time dynamic allocation module that detects traffic bursts in real time and ensures better utilization of server resources. Experiments demonstrated that Ir-LSTM can improve the hit ratio by approximately 27% rather than hidden Markov model (HMM) and pure LSTM. | - |
dc.format.extent | 4 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | ASSOC COMPUTING MACHINERY | - |
dc.title | Proxy-basedWeb Prefetching Exploiting Long Short-Term Memory | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1145/3555776.3577865 | - |
dc.identifier.scopusid | 2-s2.0-85162901409 | - |
dc.identifier.wosid | 001124308100256 | - |
dc.identifier.bibliographicCitation | SAC '23: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, pp 1831 - 1834 | - |
dc.citation.title | SAC '23: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing | - |
dc.citation.startPage | 1831 | - |
dc.citation.endPage | 1834 | - |
dc.type.docType | Proceedings Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Interdisciplinary Applications | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Theory & Methods | - |
dc.subject.keywordAuthor | Web Prefetching | - |
dc.subject.keywordAuthor | Deep Learning | - |
dc.subject.keywordAuthor | LSTM | - |
dc.identifier.url | https://dl.acm.org/doi/10.1145/3555776.3577865 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.