Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

The Personalized Thermal Comfort Prediction Using an MH-LSTM Neural Network Method

Full metadata record
DC Field Value Language
dc.contributor.authorCho, Jaeyoun-
dc.contributor.authorShin, Hyunkyu-
dc.contributor.authorAhn, Yonghan-
dc.contributor.authorHo, Jongnam-
dc.date.accessioned2024-05-14T00:30:35Z-
dc.date.available2024-05-14T00:30:35Z-
dc.date.issued2024-04-
dc.identifier.issn1687-8086-
dc.identifier.issn1687-8094-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/119001-
dc.description.abstractAs demand for indoor thermal comfort increases, occupants' subjective thermal sensation is becoming an important indicator of the building environment. Traditional models like the predicted mean vote-based model may not be reliable for individual comfort. This study proposed the multihead long short-term memory (LSTM) model to reflect physical and environment-driven data variation. Controlled experiments were conducted with individual temperature measurements of six participants, and the collected data showed significant potential to predict individual thermal comfort using a model trained for each person. The results derived from this study can be utilized, in future, for predicting the thermal comfort and for optimizing the thermal environments using personal body temperature and surrounding environmental data in a space where mainly independent activities are performed. This study contributes to the relevant literature by suggesting a method that predicts thermal comfort based on the multihead LSTM method.-
dc.format.extent14-
dc.language영어-
dc.language.isoENG-
dc.publisherHindawi Publishing Corporation-
dc.titleThe Personalized Thermal Comfort Prediction Using an MH-LSTM Neural Network Method-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1155/2024/2106137-
dc.identifier.scopusid2-s2.0-85191964730-
dc.identifier.wosid001209032600001-
dc.identifier.bibliographicCitationAdvances in Civil Engineering, v.2024, pp 1 - 14-
dc.citation.titleAdvances in Civil Engineering-
dc.citation.volume2024-
dc.citation.startPage1-
dc.citation.endPage14-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaConstruction & Building Technology-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryConstruction & Building Technology-
dc.relation.journalWebOfScienceCategoryEngineering, Civil-
dc.subject.keywordPlusPHYSIOLOGICAL-RESPONSES-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusENVIRONMENT-
dc.subject.keywordPlusSTANDARDS-
dc.subject.keywordPlusCLIMATE-
dc.identifier.urlhttps://www.hindawi.com/journals/ace/2024/2106137/-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > MAJOR IN ARCHITECTURAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ahn, Yong Han photo

Ahn, Yong Han
ERICA 공학대학 (MAJOR IN ARCHITECTURAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE