Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Assessing crash severity of urban roads with data mining techniques using big data from in-vehicle dashcam

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Nuri-
dc.contributor.authorCho, Junhan-
dc.contributor.authorPark, June young-
dc.date.accessioned2024-06-11T05:34:04Z-
dc.date.available2024-06-11T05:34:04Z-
dc.date.issued2024-01-
dc.identifier.issn2688-1594-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/119282-
dc.description.abstractThe factors that affect the severity of crashes must be identified for pedestrian and traffic safety in urban roads. Specifically, in the case of urban road crashes, these crashes occur due to the complex interaction of various factors. Therefore, it is necessary to collect high-quality data that can derive these various factors. Accordingly, this study collected crash data, which included detailed crash factor data on the huge urban and mid-level roads. Using this, various crash factors including driver, vehicle, road, environment, and crash characteristics are constructed to develop a crash severity prediction model. Through this, this study identified more detailed factors affecting the severity of urban road crashes. The crash severity model was developed using both machine learning and statistical models because the insights that can be obtained from the latest technology and traditional methods are different. Therefore, the binary logit model, a support vector machine, and extreme gradient boosting were developed using key variables derived from the multiple correspondence analysis and Boruta-SHapley Additive exPlanations. The main result of this study shows that the crash severity decreased at four-street intersections and when traffic segregation facilities were installed. The findings of this study can be used to establish a traffic safety management strategy to reduce the severity of crashes on urban roads.-
dc.format.extent24-
dc.language영어-
dc.language.isoENG-
dc.publisherAMER INST MATHEMATICAL SCIENCES-AIMS-
dc.titleAssessing crash severity of urban roads with data mining techniques using big data from in-vehicle dashcam-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.3934/era.2024029-
dc.identifier.scopusid2-s2.0-85193020009-
dc.identifier.wosid001142185800001-
dc.identifier.bibliographicCitationElectronic Research Archive, v.32, no.1, pp 584 - 607-
dc.citation.titleElectronic Research Archive-
dc.citation.volume32-
dc.citation.number1-
dc.citation.startPage584-
dc.citation.endPage607-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordPlusMACHINE LEARNING-METHODS-
dc.subject.keywordPlusINJURY SEVERITY-
dc.subject.keywordPlusDRIVERS-
dc.subject.keywordPlusBORUTA-
dc.subject.keywordAuthorcrash severity model-
dc.subject.keywordAuthorin-vehicle dashcam video data-
dc.subject.keywordAuthorcrash data-
dc.subject.keywordAuthortraffic safety-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthorurban road traffic management-
dc.identifier.urlhttps://www.aimspress.com/article/doi/10.3934/era.2024029-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF TRANSPORTATION AND LOGISTICS ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, June young photo

Park, June young
ERICA 공학대학 (DEPARTMENT OF TRANSPORTATION AND LOGISTICS ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE