Deep Q-network learning-based active speed management under autonomous driving environments
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kang, Kawon | - |
dc.contributor.author | Park, Nuri | - |
dc.contributor.author | Park, Juneyoung | - |
dc.contributor.author | Abdel-Aty, Mohamed | - |
dc.date.accessioned | 2024-06-12T03:00:37Z | - |
dc.date.available | 2024-06-12T03:00:37Z | - |
dc.date.issued | 2024-06 | - |
dc.identifier.issn | 1093-9687 | - |
dc.identifier.issn | 1467-8667 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/119357 | - |
dc.description.abstract | Efficient traffic safety management necessitates real-time crash risk prediction using expressway characteristics. With the emergence of autonomous vehicles (AVs), the development and evaluation of variable speed limit (VSL) strategies, a key active traffic management technique, become crucial for enhancing safety and mobility in mixed traffic flows. This underscores the need for optimized VSL strategies to accommodate both conventional and AVs. This paper presents a study on the development of VSL control algorithms using deep reinforcement learning in a microscopic traffic simulation. As the rewards function, time-to-collision and speed were considered. To enhance traffic safety, VSL strategies were refined across various market penetration of connected AVs. Analysis revealed that safety and traffic density are improved by 53% and 59%, respectively, in market penetration rate (MPR) 50, marking significant safety improvements in congested and low MPR scenarios. These findings present the importance of developing and evaluating VSL strategies for mixed traffic flow, particularly in the context of increasing the prevalence of connected and AVs. | - |
dc.format.extent | 18 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Blackwell Publishing Inc. | - |
dc.title | Deep Q-network learning-based active speed management under autonomous driving environments | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1111/mice.13283 | - |
dc.identifier.scopusid | 2-s2.0-85194947978 | - |
dc.identifier.wosid | 001237415400001 | - |
dc.identifier.bibliographicCitation | Computer-Aided Civil and Infrastructure Engineering, v.39, no.21, pp 1 - 18 | - |
dc.citation.title | Computer-Aided Civil and Infrastructure Engineering | - |
dc.citation.volume | 39 | - |
dc.citation.number | 21 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 18 | - |
dc.type.docType | Article; Early Access | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Construction & Building Technology | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Transportation | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Interdisciplinary Applications | - |
dc.relation.journalWebOfScienceCategory | Construction & Building Technology | - |
dc.relation.journalWebOfScienceCategory | Engineering, Civil | - |
dc.relation.journalWebOfScienceCategory | Transportation Science & Technology | - |
dc.subject.keywordPlus | LIMIT CONTROL | - |
dc.subject.keywordPlus | FLOW | - |
dc.subject.keywordPlus | MODEL | - |
dc.subject.keywordPlus | CALIBRATION | - |
dc.subject.keywordPlus | VALIDATION | - |
dc.identifier.url | https://onlinelibrary.wiley.com/doi/10.1111/mice.13283 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.