Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Evaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES)

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, Yongjun-
dc.contributor.authorCha, Junho-
dc.contributor.authorChoi, Sungkyoung-
dc.date.accessioned2024-06-13T11:04:16Z-
dc.date.available2024-06-13T11:04:16Z-
dc.date.issued2024-02-
dc.identifier.issn1471-2105-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/119460-
dc.description.abstractBackgroundGenome-wide association studies have successfully identified genetic variants associated with human disease. Various statistical approaches based on penalized and machine learning methods have recently been proposed for disease prediction. In this study, we evaluated the performance of several such methods for predicting asthma using the Korean Chip (KORV1.1) from the Korean Genome and Epidemiology Study (KoGES).ResultsFirst, single-nucleotide polymorphisms were selected via single-variant tests using logistic regression with the adjustment of several epidemiological factors. Next, we evaluated the following methods for disease prediction: ridge, least absolute shrinkage and selection operator, elastic net, smoothly clipped absolute deviation, support vector machine, random forest, boosting, bagging, naive Bayes, and k-nearest neighbor. Finally, we compared their predictive performance based on the area under the curve of the receiver operating characteristic curves, precision, recall, F1-score, Cohen ' s Kappa, balanced accuracy, error rate, Matthews correlation coefficient, and area under the precision-recall curve. Additionally, three oversampling algorithms are used to deal with imbalance problems.ConclusionsOur results show that penalized methods exhibit better predictive performance for asthma than that achieved via machine learning methods. On the other hand, in the oversampling study, randomforest and boosting methods overall showed better prediction performance than penalized methods.-
dc.format.extent27-
dc.language영어-
dc.language.isoENG-
dc.publisherBioMed Central-
dc.titleEvaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES)-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1186/s12859-024-05677-x-
dc.identifier.scopusid2-s2.0-85183820099-
dc.identifier.wosid001155411400001-
dc.identifier.bibliographicCitationBMC Bioinformatics, v.25, no.1, pp 1 - 27-
dc.citation.titleBMC Bioinformatics-
dc.citation.volume25-
dc.citation.number1-
dc.citation.startPage1-
dc.citation.endPage27-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.relation.journalResearchAreaBiochemistry & Molecular Biology-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaMathematical & Computational Biology-
dc.relation.journalWebOfScienceCategoryBiochemical Research Methods-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryMathematical & Computational Biology-
dc.subject.keywordPlusWIDE ASSOCIATION-
dc.subject.keywordPlusVARIABLE SELECTION-
dc.subject.keywordPlusPRECISION-RECALL-
dc.subject.keywordPlusRISK-
dc.subject.keywordPlusCLASSIFICATION-
dc.subject.keywordPlusREGULARIZATION-
dc.subject.keywordPlusPATHOGENICITY-
dc.subject.keywordPlusHERITABILITY-
dc.subject.keywordPlusPOLYMORPHISM-
dc.subject.keywordPlusINFORMATION-
dc.subject.keywordAuthorDisease risk prediction model-
dc.subject.keywordAuthorLarge-scale genetic data-
dc.subject.keywordAuthorAsthma-
dc.subject.keywordAuthorPenalized methods-
dc.subject.keywordAuthorMachine learning methods-
dc.subject.keywordAuthorEnsemble methods-
dc.subject.keywordAuthorGenome-wide association study-
dc.subject.keywordAuthorGWAS-
dc.subject.keywordAuthorKorean Genome and Epidemiology Study-
dc.subject.keywordAuthorKoGES-
dc.subject.keywordAuthorOversampling-
dc.identifier.urlhttps://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-024-05677-x-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > ERICA 수리데이터사이언스학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Sung kyoung photo

Choi, Sung kyoung
ERICA 소프트웨어융합대학 (ERICA 수리데이터사이언스학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE