Evaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES)
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Choi, Yongjun | - |
dc.contributor.author | Cha, Junho | - |
dc.contributor.author | Choi, Sungkyoung | - |
dc.date.accessioned | 2024-06-13T11:04:16Z | - |
dc.date.available | 2024-06-13T11:04:16Z | - |
dc.date.issued | 2024-02 | - |
dc.identifier.issn | 1471-2105 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/119460 | - |
dc.description.abstract | BackgroundGenome-wide association studies have successfully identified genetic variants associated with human disease. Various statistical approaches based on penalized and machine learning methods have recently been proposed for disease prediction. In this study, we evaluated the performance of several such methods for predicting asthma using the Korean Chip (KORV1.1) from the Korean Genome and Epidemiology Study (KoGES).ResultsFirst, single-nucleotide polymorphisms were selected via single-variant tests using logistic regression with the adjustment of several epidemiological factors. Next, we evaluated the following methods for disease prediction: ridge, least absolute shrinkage and selection operator, elastic net, smoothly clipped absolute deviation, support vector machine, random forest, boosting, bagging, naive Bayes, and k-nearest neighbor. Finally, we compared their predictive performance based on the area under the curve of the receiver operating characteristic curves, precision, recall, F1-score, Cohen ' s Kappa, balanced accuracy, error rate, Matthews correlation coefficient, and area under the precision-recall curve. Additionally, three oversampling algorithms are used to deal with imbalance problems.ConclusionsOur results show that penalized methods exhibit better predictive performance for asthma than that achieved via machine learning methods. On the other hand, in the oversampling study, randomforest and boosting methods overall showed better prediction performance than penalized methods. | - |
dc.format.extent | 27 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | BioMed Central | - |
dc.title | Evaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES) | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1186/s12859-024-05677-x | - |
dc.identifier.scopusid | 2-s2.0-85183820099 | - |
dc.identifier.wosid | 001155411400001 | - |
dc.identifier.bibliographicCitation | BMC Bioinformatics, v.25, no.1, pp 1 - 27 | - |
dc.citation.title | BMC Bioinformatics | - |
dc.citation.volume | 25 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 27 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.relation.journalResearchArea | Biochemistry & Molecular Biology | - |
dc.relation.journalResearchArea | Biotechnology & Applied Microbiology | - |
dc.relation.journalResearchArea | Mathematical & Computational Biology | - |
dc.relation.journalWebOfScienceCategory | Biochemical Research Methods | - |
dc.relation.journalWebOfScienceCategory | Biotechnology & Applied Microbiology | - |
dc.relation.journalWebOfScienceCategory | Mathematical & Computational Biology | - |
dc.subject.keywordPlus | WIDE ASSOCIATION | - |
dc.subject.keywordPlus | VARIABLE SELECTION | - |
dc.subject.keywordPlus | PRECISION-RECALL | - |
dc.subject.keywordPlus | RISK | - |
dc.subject.keywordPlus | CLASSIFICATION | - |
dc.subject.keywordPlus | REGULARIZATION | - |
dc.subject.keywordPlus | PATHOGENICITY | - |
dc.subject.keywordPlus | HERITABILITY | - |
dc.subject.keywordPlus | POLYMORPHISM | - |
dc.subject.keywordPlus | INFORMATION | - |
dc.subject.keywordAuthor | Disease risk prediction model | - |
dc.subject.keywordAuthor | Large-scale genetic data | - |
dc.subject.keywordAuthor | Asthma | - |
dc.subject.keywordAuthor | Penalized methods | - |
dc.subject.keywordAuthor | Machine learning methods | - |
dc.subject.keywordAuthor | Ensemble methods | - |
dc.subject.keywordAuthor | Genome-wide association study | - |
dc.subject.keywordAuthor | GWAS | - |
dc.subject.keywordAuthor | Korean Genome and Epidemiology Study | - |
dc.subject.keywordAuthor | KoGES | - |
dc.subject.keywordAuthor | Oversampling | - |
dc.identifier.url | https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-024-05677-x | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.