An electro-mechanical factor affecting the Li+/Mg2+ selectivity performance of ion separation metal-organic frameworks
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lim, Yejin | - |
dc.contributor.author | Kim, Youngoh | - |
dc.contributor.author | Choi, Joonmyung | - |
dc.date.accessioned | 2024-06-18T05:30:27Z | - |
dc.date.available | 2024-06-18T05:30:27Z | - |
dc.date.issued | 2024-06 | - |
dc.identifier.issn | 2050-7488 | - |
dc.identifier.issn | 2050-7496 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/119502 | - |
dc.description.abstract | Technology to selectively secure Li+ from various heavy metal complexes using a metal–organic framework (MOF)-based separator is important. This study theoretically investigated, for the first time, the method of maximizing selectivity between Li+ and Mg2+ ions with similar physical and chemical properties through UiO-66-(NH2)2. All-atom molecular dynamics simulations were used to analyze the structural and mechanical properties of hydrated ion clusters penetrating UiO-66-(NH2)2 under various electric fields. The results revealed that the robustness of the hydrates composed of ions is a key design factor for selective filtration properties. Li+ exhibits high permeability owing to repeated cleavage and recombination of water ligands in the process of penetrating the MOF. This hopping behavior is accelerated by the presence of amine groups and the application of an electric field. However, the hydrate formed by Mg2+ does not collapse its structure within the MOF because of the strong water ligand binding force. The differences between the physicochemical behavior of Li+ and Mg2+ ions discovered in this study can be directly used in MOF design and process management to maximize selective extraction of Li+. | - |
dc.format.extent | 10 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Royal Society of Chemistry | - |
dc.title | An electro-mechanical factor affecting the Li+/Mg2+ selectivity performance of ion separation metal-organic frameworks | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1039/D4TA02280G | - |
dc.identifier.scopusid | 2-s2.0-85195799166 | - |
dc.identifier.wosid | 001243563200001 | - |
dc.identifier.bibliographicCitation | Journal of Materials Chemistry A, v.12, no.27, pp 1 - 10 | - |
dc.citation.title | Journal of Materials Chemistry A | - |
dc.citation.volume | 12 | - |
dc.citation.number | 27 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 10 | - |
dc.type.docType | Article; Early Access | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | LITHIUM | - |
dc.subject.keywordPlus | WATER | - |
dc.subject.keywordPlus | MAGNESIUM | - |
dc.subject.keywordPlus | UIO-66 | - |
dc.subject.keywordPlus | EXTRACTION | - |
dc.subject.keywordPlus | DYNAMICS | - |
dc.subject.keywordPlus | BRINES | - |
dc.identifier.url | https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta02280g#! | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.