Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Default Bayesian Testing for the Zero-in ated Poisson Distribution

Full metadata record
DC Field Value Language
dc.contributor.authorHan,Yewon-
dc.contributor.authorHwang,Haewon-
dc.contributor.authorNg,Hon Keung-
dc.contributor.authorKim, Seong Wook-
dc.date.accessioned2024-07-16T12:33:24Z-
dc.date.available2024-07-16T12:33:24Z-
dc.date.issued2024-06-
dc.identifier.issn1938-7989-
dc.identifier.issn1938-7997-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/119978-
dc.description.abstractIn a Bayesian model selection and hypothesis testing, users should be cautious when choosing suitable prior distributions, as it is an important problem. More often than not, objective Bayesian analyses utilize noninformative priors such as Jeffreys priors. However, since these noninformative priors are often improper, the Bayes factor associated with these improper priors is not well-defined. To circumvent this indeterminate issue, the Bayes factor can be corrected by intrinsic and fractional methods. These adjusted Bayes factors are asymptotically equivalent to the ordinary Bayes factors calculated with proper priors, called intrinsic priors. In this article, we derive intrinsic priors for testing the point null hypothesis under a zero-inflated Poisson distribution. Extensive simulation studies are performed to support the theoretical results on asymptotic equivalence, and two real datasets are analyzed to illustrate the methodology developed in this paper.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherInternational Press of Boston, Inc.-
dc.titleDefault Bayesian Testing for the Zero-in ated Poisson Distribution-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.4310/22-SII750-
dc.identifier.scopusid2-s2.0-85201919991-
dc.identifier.wosid001292896500002-
dc.identifier.bibliographicCitationStatistics and its Interface, v.17, no.4, pp 623 - 634-
dc.citation.titleStatistics and its Interface-
dc.citation.volume17-
dc.citation.number4-
dc.citation.startPage623-
dc.citation.endPage634-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematical & Computational Biology-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematical & Computational Biology-
dc.relation.journalWebOfScienceCategoryMathematics, Interdisciplinary Applications-
dc.subject.keywordPlusINTRINSIC PRIORS-
dc.subject.keywordPlusMODEL SELECTION-
dc.subject.keywordPlusREGRESSION-
dc.subject.keywordAuthorractional Bayes factor-
dc.subject.keywordAuthorintrinsic Bayes factor-
dc.subject.keywordAuthorintrinsic prior-
dc.subject.keywordAuthorposterior probability-
dc.subject.keywordAuthorzero-inflated Poisson distribution-
dc.identifier.urlhttps://www.intlpress.com/site/pub/pages/journals/items/sii/content/vols/0017/0004/a002/index.php-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Seong Wook photo

Kim, Seong Wook
ERICA 소프트웨어융합대학 (ERICA 수리데이터사이언스학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE