Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Testing the Channels of Convolutional Neural Networks

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, Kang-
dc.contributor.authorSon, Donghyun-
dc.contributor.authorKim, Younghoon-
dc.contributor.authorSeo, Jiwon-
dc.date.accessioned2024-08-06T05:30:37Z-
dc.date.available2024-08-06T05:30:37Z-
dc.date.issued2023-02-
dc.identifier.issn2159-5399-
dc.identifier.issn2374-3468-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/120240-
dc.description.abstractNeural networks have complex structures, and thus it is hard to understand their inner workings and ensure correctness. To understand and debug convolutional neural networks (CNNs) we propose techniques for testing the channels of CNNs. We design FtGAN, an extension to GAN, that can generate test data with varying the intensity (i.e., sum of the neurons) of a channel of a target CNN. We also proposed a channel selection algorithm to find representative channels for testing. To efficiently inspect the target CNN's inference computations, we define unexpectedness score, which estimates how similar the inference computation of the test data is to that of the training data. We evaluated FtGAN with five public datasets and showed that our techniques successfully identify defective channels in five different CNN models.-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisherAssociation for the Advancement of Artificial Intelligence-
dc.titleTesting the Channels of Convolutional Neural Networks-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1609/aaai.v37i12.26726-
dc.identifier.scopusid2-s2.0-85167996252-
dc.identifier.wosid001243755000079-
dc.identifier.bibliographicCitationProceedings of the AAAI Conference on Artificial Intelligence, v.37, no.12, pp 14774 - 14782-
dc.citation.titleProceedings of the AAAI Conference on Artificial Intelligence-
dc.citation.volume37-
dc.citation.number12-
dc.citation.startPage14774-
dc.citation.endPage14782-
dc.type.docTypeProceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.subject.keywordPlusCHECKING-
dc.subject.keywordPlusSYSTEM-
dc.identifier.urlhttps://ojs.aaai.org/index.php/AAAI/article/view/26726-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > DEPARTMENT OF ARTIFICIAL INTELLIGENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young hoon photo

Kim, Young hoon
ERICA 소프트웨어융합대학 (DEPARTMENT OF ARTIFICIAL INTELLIGENCE)
Read more

Altmetrics

Total Views & Downloads

BROWSE