A lamellar-morphology-based computational modeling for predicting the thermal conductivity of semicrystalline polymers
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Hongdeok | - |
dc.contributor.author | Choi, Joonmyung | - |
dc.date.accessioned | 2024-09-05T06:30:26Z | - |
dc.date.available | 2024-09-05T06:30:26Z | - |
dc.date.issued | 2024-11 | - |
dc.identifier.issn | 0020-7403 | - |
dc.identifier.issn | 1879-2162 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/120317 | - |
dc.description.abstract | Molecular-scale design of crystal structures is an emerging approach for significantly improving the intrinsic properties of polymers. In this study, we performed computational modeling to quantitatively predict the thermal conductivity of polymers based on their crystal morphology. Polyethylene lamellae with alternating crystalline and amorphous phases were prepared using isothermal crystallization within a coarse-grained molecular dynamics framework. The crystalline bulk, transient, and amorphous regions were clearly distinguished based on the distribution of the Steinhardt-bond order parameter. The thermal conductivity of the local regions was estimated discretely by applying a steady heat flow, facilitating a bottom-up prediction of the thermal response depending on the morphology of the lamellae. In particular, the integration with homogenization theory can evaluate the effective thermal conductivity of the system in terms of crystallinity, temperature, lamella thickness and orientation. The modeling successfully provided quantitative predictions for two representative hierarchical structures: spherulites and oriented crystals. Therefore, this study serves as a theoretical guide for molecular-level rational design of semicrystalline materials with high thermal conductivity. © 2024 | - |
dc.format.extent | 12 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Elsevier Ltd | - |
dc.title | A lamellar-morphology-based computational modeling for predicting the thermal conductivity of semicrystalline polymers | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1016/j.ijmecsci.2024.109622 | - |
dc.identifier.scopusid | 2-s2.0-85200328846 | - |
dc.identifier.wosid | 001290168900001 | - |
dc.identifier.bibliographicCitation | International Journal of Mechanical Sciences, v.282, pp 1 - 12 | - |
dc.citation.title | International Journal of Mechanical Sciences | - |
dc.citation.volume | 282 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 12 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Mechanics | - |
dc.relation.journalWebOfScienceCategory | Engineering, Mechanical | - |
dc.relation.journalWebOfScienceCategory | Mechanics | - |
dc.subject.keywordPlus | MOLECULAR-DYNAMICS SIMULATIONS | - |
dc.subject.keywordPlus | POLYETHYLENE FIBERS | - |
dc.subject.keywordPlus | HIGH-MODULUS | - |
dc.subject.keywordPlus | CRYSTALLINE | - |
dc.subject.keywordPlus | COMPOSITES | - |
dc.subject.keywordPlus | MANAGEMENT | - |
dc.subject.keywordPlus | THICKNESS | - |
dc.subject.keywordPlus | FILMS | - |
dc.subject.keywordAuthor | Crystal morphological design | - |
dc.subject.keywordAuthor | Hierarchical modeling | - |
dc.subject.keywordAuthor | Multiscale prediction | - |
dc.subject.keywordAuthor | Semicrystalline polymer | - |
dc.subject.keywordAuthor | Theoretical modeling | - |
dc.subject.keywordAuthor | Thermal conductivity | - |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S0020740324006635?via%3Dihub | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.