Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Influence of crystalline structure on creep resistance capability in semi-crystalline Polymers: A coarse-grained molecular dynamics study

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Hongdeok-
dc.contributor.authorChoi, Joonmyung-
dc.date.accessioned2024-09-05T06:30:31Z-
dc.date.available2024-09-05T06:30:31Z-
dc.date.issued2024-11-
dc.identifier.issn0142-1123-
dc.identifier.issn1879-3452-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/120322-
dc.description.abstractIn this study, we investigated the intrinsic correlation between the crystal configuration and persistent mechanical stability of semi-crystalline polymers. The creep resistances of microstructures with different grain sizes and the same crystallinity were evaluated using coarse-grained molecular dynamics simulations. It was demonstrated that under tensile loading at constant pressure, microstructures with larger grains have more pronounced resistance to molecular rearrangement and significantly delay creep deformation. The improved creep resistance can be attributed to two factors. First, larger crystal sizes result in an increased moment of inertia, reducing the angular velocity required for the rotational rearrangement of the crystalline phase. Second, the elongated crystalline stems enhance the resistance to intermolecular slippage, elevating the strain energy necessary to disrupt the crystalline structure. These findings reveal the molecular basis of creep resistance at the nanoscale and highlight the pivotal role of crystal morphology in enhancing the long-term mechanical integrity of polymers.-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleInfluence of crystalline structure on creep resistance capability in semi-crystalline Polymers: A coarse-grained molecular dynamics study-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.ijfatigue.2024.108517-
dc.identifier.scopusid2-s2.0-85199376983-
dc.identifier.wosid001281432500001-
dc.identifier.bibliographicCitationInternational Journal of Fatigue, v.188, pp 1 - 8-
dc.citation.titleInternational Journal of Fatigue-
dc.citation.volume188-
dc.citation.startPage1-
dc.citation.endPage8-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusTHERMAL-DEGRADATION MECHANISM-
dc.subject.keywordPlusDENSITY POLYETHYLENE-
dc.subject.keywordPlusNANOCOMPOSITES-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusSIMULATIONS-
dc.subject.keywordPlusTENSILE-
dc.subject.keywordAuthorSemi-crystalline polymer-
dc.subject.keywordAuthorCrystal morphology-
dc.subject.keywordAuthorMechanical properties-
dc.subject.keywordAuthorCreep-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S014211232400375X?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MECHANICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE