Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

How to Solve Clinical Challenges in Mood Disorders; Machine Learning Approaches Using Electrophysiological Markers

Full metadata record
DC Field Value Language
dc.contributor.authorSong, Young Wook-
dc.contributor.authorLee, Ho Sung-
dc.contributor.authorKim, Sungkean-
dc.contributor.authorKim, Kibum-
dc.contributor.authorKim, Bin-Na-
dc.contributor.authorKim, Ji Sun-
dc.date.accessioned2024-09-05T08:00:39Z-
dc.date.available2024-09-05T08:00:39Z-
dc.date.issued2024-08-
dc.identifier.issn1738-1088-
dc.identifier.issn2093-4327-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/120398-
dc.description.abstractDifferentiating between the diagnoses of mood disorders and other psychiatric disorders, and predicting treatment response in depression has long been a concern for clinicians. Machine learning (ML) is one part of artificial intelligence that focuses on instructing computers to mimic the cognitive abilities of the human brain through training. This study will review the research on the use of ML techniques to differentiate diagnoses and predict treatment responses in mood disorders based on electroencephalography (EEG) data. There have been several attempts to differentiate between the diagnoses of bipolar disorder and major depressive disorder , mood disorders, and other psychiatric disorders using ML techniques found on EEG markers. Previous studies have shown that accuracy varies depending on which EEG markers are used, the sample size, and the ML technique. Also, precise and improved ML approaches can be developed by adapting the various feature selection and validation methods that reflect each disease's characteristics. Although ML faces some limitations and challenges in solving for consistent and improved accuracy in the diagnosis and treatment of mood disorders, it has a great potential to understand mood disorders better and provide valuable tools to personalize both identification and treatment.-
dc.format.extent15-
dc.language영어-
dc.language.isoENG-
dc.publisher대한정신약물학회-
dc.titleHow to Solve Clinical Challenges in Mood Disorders; Machine Learning Approaches Using Electrophysiological Markers-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.9758/cpn.24.1165-
dc.identifier.scopusid2-s2.0-85200648774-
dc.identifier.wosid001283027500002-
dc.identifier.bibliographicCitationClinical Psychopharmacology and Neuroscience, v.22, no.3, pp 416 - 430-
dc.citation.titleClinical Psychopharmacology and Neuroscience-
dc.citation.volume22-
dc.citation.number3-
dc.citation.startPage416-
dc.citation.endPage430-
dc.type.docTypeArticle-
dc.identifier.kciidART003109228-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaNeurosciences & Neurology-
dc.relation.journalResearchAreaPharmacology & Pharmacy-
dc.relation.journalWebOfScienceCategoryNeurosciences-
dc.relation.journalWebOfScienceCategoryPharmacology & Pharmacy-
dc.subject.keywordPlusBIPOLAR DISORDER-
dc.subject.keywordPlusFEATURE-SELECTION-
dc.subject.keywordPlusCOMPONENT ANALYSIS-
dc.subject.keywordPlusPREDICT RESPONSE-
dc.subject.keywordPlusEEG-
dc.subject.keywordPlusDEPRESSION-
dc.subject.keywordPlusUNIPOLAR-
dc.subject.keywordPlusCLASSIFICATION-
dc.subject.keywordPlusSCHIZOPHRENIA-
dc.subject.keywordPlusBIOMARKERS-
dc.subject.keywordAuthorElectroencephalography-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorBipolar disorder-
dc.subject.keywordAuthorMajor depressive disorder-
dc.subject.keywordAuthorDiagnosis-
dc.subject.keywordAuthorTreatment response-
dc.identifier.urlhttps://www.cpn.or.kr/journal/view.html?doi=10.9758/cpn.24.1165-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > SCHOOL OF MEDIA, CULTURE, AND DESIGN TECHNOLOGY > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Kibum photo

Kim, Kibum
ERICA 소프트웨어융합대학 (SCHOOL OF MEDIA, CULTURE, AND DESIGN TECHNOLOGY)
Read more

Altmetrics

Total Views & Downloads

BROWSE