How to Solve Clinical Challenges in Mood Disorders; Machine Learning Approaches Using Electrophysiological Markers
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Song, Young Wook | - |
dc.contributor.author | Lee, Ho Sung | - |
dc.contributor.author | Kim, Sungkean | - |
dc.contributor.author | Kim, Kibum | - |
dc.contributor.author | Kim, Bin-Na | - |
dc.contributor.author | Kim, Ji Sun | - |
dc.date.accessioned | 2024-09-05T08:00:39Z | - |
dc.date.available | 2024-09-05T08:00:39Z | - |
dc.date.issued | 2024-08 | - |
dc.identifier.issn | 1738-1088 | - |
dc.identifier.issn | 2093-4327 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/120398 | - |
dc.description.abstract | Differentiating between the diagnoses of mood disorders and other psychiatric disorders, and predicting treatment response in depression has long been a concern for clinicians. Machine learning (ML) is one part of artificial intelligence that focuses on instructing computers to mimic the cognitive abilities of the human brain through training. This study will review the research on the use of ML techniques to differentiate diagnoses and predict treatment responses in mood disorders based on electroencephalography (EEG) data. There have been several attempts to differentiate between the diagnoses of bipolar disorder and major depressive disorder , mood disorders, and other psychiatric disorders using ML techniques found on EEG markers. Previous studies have shown that accuracy varies depending on which EEG markers are used, the sample size, and the ML technique. Also, precise and improved ML approaches can be developed by adapting the various feature selection and validation methods that reflect each disease's characteristics. Although ML faces some limitations and challenges in solving for consistent and improved accuracy in the diagnosis and treatment of mood disorders, it has a great potential to understand mood disorders better and provide valuable tools to personalize both identification and treatment. | - |
dc.format.extent | 15 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | 대한정신약물학회 | - |
dc.title | How to Solve Clinical Challenges in Mood Disorders; Machine Learning Approaches Using Electrophysiological Markers | - |
dc.type | Article | - |
dc.publisher.location | 대한민국 | - |
dc.identifier.doi | 10.9758/cpn.24.1165 | - |
dc.identifier.scopusid | 2-s2.0-85200648774 | - |
dc.identifier.wosid | 001283027500002 | - |
dc.identifier.bibliographicCitation | Clinical Psychopharmacology and Neuroscience, v.22, no.3, pp 416 - 430 | - |
dc.citation.title | Clinical Psychopharmacology and Neuroscience | - |
dc.citation.volume | 22 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 416 | - |
dc.citation.endPage | 430 | - |
dc.type.docType | Article | - |
dc.identifier.kciid | ART003109228 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | kci | - |
dc.relation.journalResearchArea | Neurosciences & Neurology | - |
dc.relation.journalResearchArea | Pharmacology & Pharmacy | - |
dc.relation.journalWebOfScienceCategory | Neurosciences | - |
dc.relation.journalWebOfScienceCategory | Pharmacology & Pharmacy | - |
dc.subject.keywordPlus | BIPOLAR DISORDER | - |
dc.subject.keywordPlus | FEATURE-SELECTION | - |
dc.subject.keywordPlus | COMPONENT ANALYSIS | - |
dc.subject.keywordPlus | PREDICT RESPONSE | - |
dc.subject.keywordPlus | EEG | - |
dc.subject.keywordPlus | DEPRESSION | - |
dc.subject.keywordPlus | UNIPOLAR | - |
dc.subject.keywordPlus | CLASSIFICATION | - |
dc.subject.keywordPlus | SCHIZOPHRENIA | - |
dc.subject.keywordPlus | BIOMARKERS | - |
dc.subject.keywordAuthor | Electroencephalography | - |
dc.subject.keywordAuthor | Machine learning | - |
dc.subject.keywordAuthor | Bipolar disorder | - |
dc.subject.keywordAuthor | Major depressive disorder | - |
dc.subject.keywordAuthor | Diagnosis | - |
dc.subject.keywordAuthor | Treatment response | - |
dc.identifier.url | https://www.cpn.or.kr/journal/view.html?doi=10.9758/cpn.24.1165 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.